Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 39
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Cavendish
1
70 kgRoelandts
3
78 kgPoulhiès
4
75 kgSchets
5
74 kgMaes
16
78 kgReimer
19
69 kgClancy
32
79 kgPineau
35
68 kgOffredo
36
69 kgDe Ketele
37
66 kgDe Poortere
43
70 kgCoppel
44
64 kgRolland
45
70 kgJeandesboz
46
69 kgRasmussen
51
88 kgCapelli
58
78 kgSeubert
75
73 kg
1
70 kgRoelandts
3
78 kgPoulhiès
4
75 kgSchets
5
74 kgMaes
16
78 kgReimer
19
69 kgClancy
32
79 kgPineau
35
68 kgOffredo
36
69 kgDe Ketele
37
66 kgDe Poortere
43
70 kgCoppel
44
64 kgRolland
45
70 kgJeandesboz
46
69 kgRasmussen
51
88 kgCapelli
58
78 kgSeubert
75
73 kg
Weight (KG) →
Result →
88
64
1
75
# | Rider | Weight (KG) |
---|---|---|
1 | CAVENDISH Mark | 70 |
3 | ROELANDTS Jürgen | 78 |
4 | POULHIÈS Stéphane | 75 |
5 | SCHETS Steve | 74 |
16 | MAES Nikolas | 78 |
19 | REIMER Martin | 69 |
32 | CLANCY Edward | 79 |
35 | PINEAU Cédric | 68 |
36 | OFFREDO Yoann | 69 |
37 | DE KETELE Kenny | 66 |
43 | DE POORTERE Ingmar | 70 |
44 | COPPEL Jérôme | 64 |
45 | ROLLAND Pierre | 70 |
46 | JEANDESBOZ Fabrice | 69 |
51 | RASMUSSEN Alex | 88 |
58 | CAPELLI Ermano | 78 |
75 | SEUBERT Timon | 73 |