Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight + 1
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Howard
1
72 kgChaigneau
3
80 kgBoeckmans
4
76 kgMatzka
5
69 kgPfingsten
14
69 kgLindeman
21
69 kgJanorschke
26
78 kgKreder
28
70 kgMeyer
41
68 kgBobridge
44
65 kgWestmattelmann
47
75 kgBrändle
63
80 kgGeschke
64
64 kgNerz
67
67 kgSeubert
73
73 kgKluge
81
83 kgMoberg Jørgensen
87
73 kgO'Shea
88
76 kg
1
72 kgChaigneau
3
80 kgBoeckmans
4
76 kgMatzka
5
69 kgPfingsten
14
69 kgLindeman
21
69 kgJanorschke
26
78 kgKreder
28
70 kgMeyer
41
68 kgBobridge
44
65 kgWestmattelmann
47
75 kgBrändle
63
80 kgGeschke
64
64 kgNerz
67
67 kgSeubert
73
73 kgKluge
81
83 kgMoberg Jørgensen
87
73 kgO'Shea
88
76 kg
Weight (KG) →
Result →
83
64
1
88
# | Rider | Weight (KG) |
---|---|---|
1 | HOWARD Leigh | 72 |
3 | CHAIGNEAU Robin | 80 |
4 | BOECKMANS Kris | 76 |
5 | MATZKA Ralf | 69 |
14 | PFINGSTEN Christoph | 69 |
21 | LINDEMAN Bert-Jan | 69 |
26 | JANORSCHKE Grischa | 78 |
28 | KREDER Raymond | 70 |
41 | MEYER Travis | 68 |
44 | BOBRIDGE Jack | 65 |
47 | WESTMATTELMANN Daniel | 75 |
63 | BRÄNDLE Matthias | 80 |
64 | GESCHKE Simon | 64 |
67 | NERZ Dominik | 67 |
73 | SEUBERT Timon | 73 |
81 | KLUGE Roger | 83 |
87 | MOBERG JØRGENSEN Christian | 73 |
88 | O'SHEA Glenn | 76 |