Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.4 * weight + 138
This means that on average for every extra kilogram weight a rider loses -1.4 positions in the result.
Boeckmans
3
76 kgChaigneau
4
80 kgBrändle
8
80 kgMatzka
11
69 kgHoward
14
72 kgMeyer
20
68 kgKluge
26
83 kgPfingsten
28
69 kgKreder
30
70 kgWestmattelmann
35
75 kgNerz
41
67 kgJanorschke
44
78 kgBobridge
48
65 kgGeschke
56
64 kgO'Shea
62
76 kgSeubert
70
73 kgMoberg Jørgensen
73
73 kgLindeman
74
69 kg
3
76 kgChaigneau
4
80 kgBrändle
8
80 kgMatzka
11
69 kgHoward
14
72 kgMeyer
20
68 kgKluge
26
83 kgPfingsten
28
69 kgKreder
30
70 kgWestmattelmann
35
75 kgNerz
41
67 kgJanorschke
44
78 kgBobridge
48
65 kgGeschke
56
64 kgO'Shea
62
76 kgSeubert
70
73 kgMoberg Jørgensen
73
73 kgLindeman
74
69 kg
Weight (KG) →
Result →
83
64
3
74
# | Rider | Weight (KG) |
---|---|---|
3 | BOECKMANS Kris | 76 |
4 | CHAIGNEAU Robin | 80 |
8 | BRÄNDLE Matthias | 80 |
11 | MATZKA Ralf | 69 |
14 | HOWARD Leigh | 72 |
20 | MEYER Travis | 68 |
26 | KLUGE Roger | 83 |
28 | PFINGSTEN Christoph | 69 |
30 | KREDER Raymond | 70 |
35 | WESTMATTELMANN Daniel | 75 |
41 | NERZ Dominik | 67 |
44 | JANORSCHKE Grischa | 78 |
48 | BOBRIDGE Jack | 65 |
56 | GESCHKE Simon | 64 |
62 | O'SHEA Glenn | 76 |
70 | SEUBERT Timon | 73 |
73 | MOBERG JØRGENSEN Christian | 73 |
74 | LINDEMAN Bert-Jan | 69 |