Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 147
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
Chaigneau
2
80 kgCordeel
6
80 kgPfingsten
15
69 kgSchiewer
17
70 kgForke
19
78 kgKal
20
72 kgSeubert
22
73 kgSelig
30
80 kgQuast
36
67 kgAriesen
40
70 kgReinhardt
41
72 kgOelerich
46
70 kgStępniak
55
75 kgMatzka
59
69 kgSchnaidt
75
70 kgMoberg Jørgensen
78
73 kgBernas
87
77 kg
2
80 kgCordeel
6
80 kgPfingsten
15
69 kgSchiewer
17
70 kgForke
19
78 kgKal
20
72 kgSeubert
22
73 kgSelig
30
80 kgQuast
36
67 kgAriesen
40
70 kgReinhardt
41
72 kgOelerich
46
70 kgStępniak
55
75 kgMatzka
59
69 kgSchnaidt
75
70 kgMoberg Jørgensen
78
73 kgBernas
87
77 kg
Weight (KG) →
Result →
80
67
2
87
# | Rider | Weight (KG) |
---|---|---|
2 | CHAIGNEAU Robin | 80 |
6 | CORDEEL Sander | 80 |
15 | PFINGSTEN Christoph | 69 |
17 | SCHIEWER Franz | 70 |
19 | FORKE Sebastian | 78 |
20 | KAL Miraç | 72 |
22 | SEUBERT Timon | 73 |
30 | SELIG Rüdiger | 80 |
36 | QUAST Ole | 67 |
40 | ARIESEN Johim | 70 |
41 | REINHARDT Theo | 72 |
46 | OELERICH Jan | 70 |
55 | STĘPNIAK Grzegorz | 75 |
59 | MATZKA Ralf | 69 |
75 | SCHNAIDT Fabian | 70 |
78 | MOBERG JØRGENSEN Christian | 73 |
87 | BERNAS Paweł | 77 |