Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 56
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Coquard
1
59 kgWippert
2
75 kgArndt
3
77.5 kgvan der Weijst
4
63 kgDžervus
6
77 kgMcLay
11
72 kgReinhardt
12
72 kgWalscheid
29
90 kgMerseburg
33
75 kgKoch
47
69 kgSénéchal
48
77 kgVan Meirhaeghe
51
71 kgCampenaerts
69
68 kgDvorsky
73
64 kgRaeymaekers
75
68 kgVakoč
83
68 kgBoons
99
85 kgLammertink
100
68 kgSchiewer
101
70 kg
1
59 kgWippert
2
75 kgArndt
3
77.5 kgvan der Weijst
4
63 kgDžervus
6
77 kgMcLay
11
72 kgReinhardt
12
72 kgWalscheid
29
90 kgMerseburg
33
75 kgKoch
47
69 kgSénéchal
48
77 kgVan Meirhaeghe
51
71 kgCampenaerts
69
68 kgDvorsky
73
64 kgRaeymaekers
75
68 kgVakoč
83
68 kgBoons
99
85 kgLammertink
100
68 kgSchiewer
101
70 kg
Weight (KG) →
Result →
90
59
1
101
# | Rider | Weight (KG) |
---|---|---|
1 | COQUARD Bryan | 59 |
2 | WIPPERT Wouter | 75 |
3 | ARNDT Nikias | 77.5 |
4 | VAN DER WEIJST Geert | 63 |
6 | DŽERVUS Darijus | 77 |
11 | MCLAY Daniel | 72 |
12 | REINHARDT Theo | 72 |
29 | WALSCHEID Max | 90 |
33 | MERSEBURG Dominik | 75 |
47 | KOCH Michel | 69 |
48 | SÉNÉCHAL Florian | 77 |
51 | VAN MEIRHAEGHE Jef | 71 |
69 | CAMPENAERTS Victor | 68 |
73 | DVORSKY David | 64 |
75 | RAEYMAEKERS Mattias | 68 |
83 | VAKOČ Petr | 68 |
99 | BOONS Ruben | 85 |
100 | LAMMERTINK Steven | 68 |
101 | SCHIEWER Franz | 70 |