Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 22
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Reinders
1
78.1 kgMager
3
60 kgRohde
5
75 kgPolitt
6
80 kgDinkler
7
61 kgReske
9
64 kgAriesen
11
70 kgBeyer
12
75 kgSagiv
13
68 kgWalscheid
14
90 kgTenbrock
15
74 kgBrusselman
17
76 kgCarstensen
20
69 kgBouwman
23
60 kgGoldstein
34
63 kgLöer
35
69 kgHuppertz
37
66 kgEgner
43
73 kgYechezkel
44
70 kgKessler
47
78 kgKoch
48
75 kgvan der Hoorn
54
73 kgAckermann
60
78 kgBerger
67
66 kg
1
78.1 kgMager
3
60 kgRohde
5
75 kgPolitt
6
80 kgDinkler
7
61 kgReske
9
64 kgAriesen
11
70 kgBeyer
12
75 kgSagiv
13
68 kgWalscheid
14
90 kgTenbrock
15
74 kgBrusselman
17
76 kgCarstensen
20
69 kgBouwman
23
60 kgGoldstein
34
63 kgLöer
35
69 kgHuppertz
37
66 kgEgner
43
73 kgYechezkel
44
70 kgKessler
47
78 kgKoch
48
75 kgvan der Hoorn
54
73 kgAckermann
60
78 kgBerger
67
66 kg
Weight (KG) →
Result →
90
60
1
67
# | Rider | Weight (KG) |
---|---|---|
1 | REINDERS Elmar | 78.1 |
3 | MAGER Christian | 60 |
5 | ROHDE Leon | 75 |
6 | POLITT Nils | 80 |
7 | DINKLER Jonathan | 61 |
9 | RESKE Tim | 64 |
11 | ARIESEN Tim | 70 |
12 | BEYER Maximilian | 75 |
13 | SAGIV Guy | 68 |
14 | WALSCHEID Max | 90 |
15 | TENBROCK Jonas | 74 |
17 | BRUSSELMAN Twan | 76 |
20 | CARSTENSEN Lucas | 69 |
23 | BOUWMAN Koen | 60 |
34 | GOLDSTEIN Roy | 63 |
35 | LÖER Lukas | 69 |
37 | HUPPERTZ Joshua | 66 |
43 | EGNER Arne | 73 |
44 | YECHEZKEL Aviv | 70 |
47 | KESSLER Robert | 78 |
48 | KOCH Jonas | 75 |
54 | VAN DER HOORN Taco | 73 |
60 | ACKERMANN Pascal | 78 |
67 | BERGER Leon | 66 |