Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 100
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Reinders
2
78.1 kgEgner
4
73 kgPolitt
5
80 kgBrusselman
6
76 kgTenbrock
8
74 kgMager
9
60 kgWalscheid
10
90 kgAriesen
11
70 kgRohde
12
75 kgLöer
14
69 kgBeyer
16
75 kgBouwman
17
60 kgHuppertz
18
66 kgKoch
21
75 kgKessler
23
78 kgDinkler
29
61 kgAckermann
38
78 kgCarstensen
39
69 kgvan der Hoorn
40
73 kgReske
48
64 kgYechezkel
52
70 kgGoldstein
55
63 kgBerger
59
66 kgSagiv
65
68 kg
2
78.1 kgEgner
4
73 kgPolitt
5
80 kgBrusselman
6
76 kgTenbrock
8
74 kgMager
9
60 kgWalscheid
10
90 kgAriesen
11
70 kgRohde
12
75 kgLöer
14
69 kgBeyer
16
75 kgBouwman
17
60 kgHuppertz
18
66 kgKoch
21
75 kgKessler
23
78 kgDinkler
29
61 kgAckermann
38
78 kgCarstensen
39
69 kgvan der Hoorn
40
73 kgReske
48
64 kgYechezkel
52
70 kgGoldstein
55
63 kgBerger
59
66 kgSagiv
65
68 kg
Weight (KG) →
Result →
90
60
2
65
# | Rider | Weight (KG) |
---|---|---|
2 | REINDERS Elmar | 78.1 |
4 | EGNER Arne | 73 |
5 | POLITT Nils | 80 |
6 | BRUSSELMAN Twan | 76 |
8 | TENBROCK Jonas | 74 |
9 | MAGER Christian | 60 |
10 | WALSCHEID Max | 90 |
11 | ARIESEN Tim | 70 |
12 | ROHDE Leon | 75 |
14 | LÖER Lukas | 69 |
16 | BEYER Maximilian | 75 |
17 | BOUWMAN Koen | 60 |
18 | HUPPERTZ Joshua | 66 |
21 | KOCH Jonas | 75 |
23 | KESSLER Robert | 78 |
29 | DINKLER Jonathan | 61 |
38 | ACKERMANN Pascal | 78 |
39 | CARSTENSEN Lucas | 69 |
40 | VAN DER HOORN Taco | 73 |
48 | RESKE Tim | 64 |
52 | YECHEZKEL Aviv | 70 |
55 | GOLDSTEIN Roy | 63 |
59 | BERGER Leon | 66 |
65 | SAGIV Guy | 68 |