Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 111
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Beyer
1
75 kgAriesen
2
70 kgAckermann
3
78 kgvan der Hoorn
5
73 kgReske
6
64 kgWalscheid
7
90 kgHuppertz
9
66 kgKoch
11
75 kgBrusselman
13
76 kgTenbrock
19
74 kgCarstensen
21
69 kgReinders
25
78.1 kgPolitt
27
80 kgBouwman
31
60 kgKessler
35
78 kgLöer
39
69 kgEgner
42
73 kgMager
43
60 kgGoldstein
44
63 kgRohde
49
75 kgDinkler
55
61 kgBerger
60
66 kgSagiv
64
68 kgYechezkel
66
70 kg
1
75 kgAriesen
2
70 kgAckermann
3
78 kgvan der Hoorn
5
73 kgReske
6
64 kgWalscheid
7
90 kgHuppertz
9
66 kgKoch
11
75 kgBrusselman
13
76 kgTenbrock
19
74 kgCarstensen
21
69 kgReinders
25
78.1 kgPolitt
27
80 kgBouwman
31
60 kgKessler
35
78 kgLöer
39
69 kgEgner
42
73 kgMager
43
60 kgGoldstein
44
63 kgRohde
49
75 kgDinkler
55
61 kgBerger
60
66 kgSagiv
64
68 kgYechezkel
66
70 kg
Weight (KG) →
Result →
90
60
1
66
# | Rider | Weight (KG) |
---|---|---|
1 | BEYER Maximilian | 75 |
2 | ARIESEN Tim | 70 |
3 | ACKERMANN Pascal | 78 |
5 | VAN DER HOORN Taco | 73 |
6 | RESKE Tim | 64 |
7 | WALSCHEID Max | 90 |
9 | HUPPERTZ Joshua | 66 |
11 | KOCH Jonas | 75 |
13 | BRUSSELMAN Twan | 76 |
19 | TENBROCK Jonas | 74 |
21 | CARSTENSEN Lucas | 69 |
25 | REINDERS Elmar | 78.1 |
27 | POLITT Nils | 80 |
31 | BOUWMAN Koen | 60 |
35 | KESSLER Robert | 78 |
39 | LÖER Lukas | 69 |
42 | EGNER Arne | 73 |
43 | MAGER Christian | 60 |
44 | GOLDSTEIN Roy | 63 |
49 | ROHDE Leon | 75 |
55 | DINKLER Jonathan | 61 |
60 | BERGER Leon | 66 |
64 | SAGIV Guy | 68 |
66 | YECHEZKEL Aviv | 70 |