Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 45
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Walscheid
1
90 kgReske
2
64 kgAriesen
4
70 kgHuppertz
6
66 kgCarstensen
10
69 kgSagiv
13
68 kgAckermann
14
78 kgYechezkel
16
70 kgBeyer
17
75 kgLöer
29
69 kgTenbrock
31
74 kgDinkler
35
61 kgGoldstein
40
63 kgBouwman
43
60 kgBrusselman
45
76 kgPolitt
46
80 kgKessler
50
78 kgReinders
52
78.1 kgKoch
53
75 kgEgner
55
73 kgMager
56
60 kgRohde
58
75 kgBerger
60
66 kg
1
90 kgReske
2
64 kgAriesen
4
70 kgHuppertz
6
66 kgCarstensen
10
69 kgSagiv
13
68 kgAckermann
14
78 kgYechezkel
16
70 kgBeyer
17
75 kgLöer
29
69 kgTenbrock
31
74 kgDinkler
35
61 kgGoldstein
40
63 kgBouwman
43
60 kgBrusselman
45
76 kgPolitt
46
80 kgKessler
50
78 kgReinders
52
78.1 kgKoch
53
75 kgEgner
55
73 kgMager
56
60 kgRohde
58
75 kgBerger
60
66 kg
Weight (KG) →
Result →
90
60
1
60
# | Rider | Weight (KG) |
---|---|---|
1 | WALSCHEID Max | 90 |
2 | RESKE Tim | 64 |
4 | ARIESEN Tim | 70 |
6 | HUPPERTZ Joshua | 66 |
10 | CARSTENSEN Lucas | 69 |
13 | SAGIV Guy | 68 |
14 | ACKERMANN Pascal | 78 |
16 | YECHEZKEL Aviv | 70 |
17 | BEYER Maximilian | 75 |
29 | LÖER Lukas | 69 |
31 | TENBROCK Jonas | 74 |
35 | DINKLER Jonathan | 61 |
40 | GOLDSTEIN Roy | 63 |
43 | BOUWMAN Koen | 60 |
45 | BRUSSELMAN Twan | 76 |
46 | POLITT Nils | 80 |
50 | KESSLER Robert | 78 |
52 | REINDERS Elmar | 78.1 |
53 | KOCH Jonas | 75 |
55 | EGNER Arne | 73 |
56 | MAGER Christian | 60 |
58 | ROHDE Leon | 75 |
60 | BERGER Leon | 66 |