Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 76
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Walscheid
1
90 kgReske
2
64 kgAriesen
5
70 kgHuppertz
6
66 kgCarstensen
7
69 kgAckermann
9
78 kgPolitt
16
80 kgBeyer
18
75 kgDinkler
22
61 kgTenbrock
24
74 kgLöer
25
69 kgKoch
32
75 kgRohde
34
75 kgReinders
36
78.1 kgMager
37
60 kgEgner
38
73 kgGoldstein
42
63 kgSagiv
43
68 kgBrusselman
47
76 kgKessler
55
78 kgBouwman
58
60 kgYechezkel
59
70 kgBerger
63
66 kg
1
90 kgReske
2
64 kgAriesen
5
70 kgHuppertz
6
66 kgCarstensen
7
69 kgAckermann
9
78 kgPolitt
16
80 kgBeyer
18
75 kgDinkler
22
61 kgTenbrock
24
74 kgLöer
25
69 kgKoch
32
75 kgRohde
34
75 kgReinders
36
78.1 kgMager
37
60 kgEgner
38
73 kgGoldstein
42
63 kgSagiv
43
68 kgBrusselman
47
76 kgKessler
55
78 kgBouwman
58
60 kgYechezkel
59
70 kgBerger
63
66 kg
Weight (KG) →
Result →
90
60
1
63
# | Rider | Weight (KG) |
---|---|---|
1 | WALSCHEID Max | 90 |
2 | RESKE Tim | 64 |
5 | ARIESEN Tim | 70 |
6 | HUPPERTZ Joshua | 66 |
7 | CARSTENSEN Lucas | 69 |
9 | ACKERMANN Pascal | 78 |
16 | POLITT Nils | 80 |
18 | BEYER Maximilian | 75 |
22 | DINKLER Jonathan | 61 |
24 | TENBROCK Jonas | 74 |
25 | LÖER Lukas | 69 |
32 | KOCH Jonas | 75 |
34 | ROHDE Leon | 75 |
36 | REINDERS Elmar | 78.1 |
37 | MAGER Christian | 60 |
38 | EGNER Arne | 73 |
42 | GOLDSTEIN Roy | 63 |
43 | SAGIV Guy | 68 |
47 | BRUSSELMAN Twan | 76 |
55 | KESSLER Robert | 78 |
58 | BOUWMAN Koen | 60 |
59 | YECHEZKEL Aviv | 70 |
63 | BERGER Leon | 66 |