Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.6 * weight - 90
This means that on average for every extra kilogram weight a rider loses 1.6 positions in the result.
Sayar
1
64 kgde la Parte
2
64 kgChaabane
3
70 kgZaballa
4
66 kgSchumacher
5
71 kgLagab
7
63 kgChtioui
8
82 kgBouglas
11
71 kgSchäfer
16
66 kgPedersen
21
62 kgBichlmann
24
72 kgde la Fuente
32
67 kgFurlan
37
72 kgSchormair
39
64 kgSkujiņš
40
70 kgOrr
45
74 kgBēcis
55
82 kgMetlushenko
61
82 kgKal
63
72 kg
1
64 kgde la Parte
2
64 kgChaabane
3
70 kgZaballa
4
66 kgSchumacher
5
71 kgLagab
7
63 kgChtioui
8
82 kgBouglas
11
71 kgSchäfer
16
66 kgPedersen
21
62 kgBichlmann
24
72 kgde la Fuente
32
67 kgFurlan
37
72 kgSchormair
39
64 kgSkujiņš
40
70 kgOrr
45
74 kgBēcis
55
82 kgMetlushenko
61
82 kgKal
63
72 kg
Weight (KG) →
Result →
82
62
1
63
# | Rider | Weight (KG) |
---|---|---|
1 | SAYAR Mustafa | 64 |
2 | DE LA PARTE Víctor | 64 |
3 | CHAABANE Hichem | 70 |
4 | ZABALLA Constantino | 66 |
5 | SCHUMACHER Stefan | 71 |
7 | LAGAB Azzedine | 63 |
8 | CHTIOUI Rafaâ | 82 |
11 | BOUGLAS Georgios | 71 |
16 | SCHÄFER Timo | 66 |
21 | PEDERSEN Martin | 62 |
24 | BICHLMANN Daniel | 72 |
32 | DE LA FUENTE David | 67 |
37 | FURLAN Angelo | 72 |
39 | SCHORMAIR Fabian | 64 |
40 | SKUJIŅŠ Toms | 70 |
45 | ORR Robert | 74 |
55 | BĒCIS Armands | 82 |
61 | METLUSHENKO Yuri | 82 |
63 | KAL Miraç | 72 |