Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 9
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Skujiņš
1
70 kgBouglas
8
71 kgSayar
14
64 kgBichlmann
15
72 kgZaballa
16
66 kgBēcis
17
82 kgSchumacher
20
71 kgde la Parte
22
64 kgChaabane
25
70 kgKal
30
72 kgLagab
31
63 kgOrr
32
74 kgSchäfer
38
66 kgSchormair
43
64 kgFurlan
44
72 kgde la Fuente
48
67 kgMetlushenko
54
82 kg
1
70 kgBouglas
8
71 kgSayar
14
64 kgBichlmann
15
72 kgZaballa
16
66 kgBēcis
17
82 kgSchumacher
20
71 kgde la Parte
22
64 kgChaabane
25
70 kgKal
30
72 kgLagab
31
63 kgOrr
32
74 kgSchäfer
38
66 kgSchormair
43
64 kgFurlan
44
72 kgde la Fuente
48
67 kgMetlushenko
54
82 kg
Weight (KG) →
Result →
82
63
1
54
# | Rider | Weight (KG) |
---|---|---|
1 | SKUJIŅŠ Toms | 70 |
8 | BOUGLAS Georgios | 71 |
14 | SAYAR Mustafa | 64 |
15 | BICHLMANN Daniel | 72 |
16 | ZABALLA Constantino | 66 |
17 | BĒCIS Armands | 82 |
20 | SCHUMACHER Stefan | 71 |
22 | DE LA PARTE Víctor | 64 |
25 | CHAABANE Hichem | 70 |
30 | KAL Miraç | 72 |
31 | LAGAB Azzedine | 63 |
32 | ORR Robert | 74 |
38 | SCHÄFER Timo | 66 |
43 | SCHORMAIR Fabian | 64 |
44 | FURLAN Angelo | 72 |
48 | DE LA FUENTE David | 67 |
54 | METLUSHENKO Yuri | 82 |