Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 60
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Kooij
1
72 kgMijnsbergen
2
68 kgKurits
5
74 kgvan Sintmaartensdijk
7
77 kgBourgoyne
8
66 kgYamada
12
63 kgKrijnsen
13
73 kgChromy
19
63 kgKhatpin
20
60 kgMcNeil
21
57 kgBarnhill
23
64 kgZwaan
30
57 kgCajucom
35
60 kgKawano
36
68 kgBocharov
39
72 kgZhaparuly
58
59 kgDostiyev
59
57 kgHusted
61
68 kgAjis
68
53 kgThomsen
81
72 kgCarter
92
78 kgLi
98
68 kgSlamzhanov
109
64 kg
1
72 kgMijnsbergen
2
68 kgKurits
5
74 kgvan Sintmaartensdijk
7
77 kgBourgoyne
8
66 kgYamada
12
63 kgKrijnsen
13
73 kgChromy
19
63 kgKhatpin
20
60 kgMcNeil
21
57 kgBarnhill
23
64 kgZwaan
30
57 kgCajucom
35
60 kgKawano
36
68 kgBocharov
39
72 kgZhaparuly
58
59 kgDostiyev
59
57 kgHusted
61
68 kgAjis
68
53 kgThomsen
81
72 kgCarter
92
78 kgLi
98
68 kgSlamzhanov
109
64 kg
Weight (KG) →
Result →
78
53
1
109
# | Rider | Weight (KG) |
---|---|---|
1 | KOOIJ Olav | 72 |
2 | MIJNSBERGEN Thomas | 68 |
5 | KURITS Joonas | 74 |
7 | VAN SINTMAARTENSDIJK Roel | 77 |
8 | BOURGOYNE Lucas | 66 |
12 | YAMADA Takumi | 63 |
13 | KRIJNSEN Jelte | 73 |
19 | CHROMY Kyle | 63 |
20 | KHATPIN Nurzhan | 60 |
21 | MCNEIL Aidan | 57 |
23 | BARNHILL Zac | 64 |
30 | ZWAAN Wouter | 57 |
35 | CAJUCOM Ean | 60 |
36 | KAWANO Aoki | 68 |
39 | BOCHAROV Dmitriy | 72 |
58 | ZHAPARULY Bauyrzhan | 59 |
59 | DOSTIYEV Ilkhan | 57 |
61 | HUSTED Eli | 68 |
68 | AJIS Muhammad Hakimi | 53 |
81 | THOMSEN Finn | 72 |
92 | CARTER Nick | 78 |
98 | LI Ting Wei | 68 |
109 | SLAMZHANOV Orken | 64 |