Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 19
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Bourgoyne
1
66 kgKrijnsen
2
73 kgMcNeil
3
57 kgYamada
4
63 kgKawano
6
68 kgBarnhill
7
64 kgKooij
11
72 kgBocharov
12
72 kgSlamzhanov
14
64 kgZhaparuly
18
59 kgChromy
19
63 kgvan Sintmaartensdijk
20
77 kgMijnsbergen
22
68 kgAjis
24
53 kgKhatpin
32
60 kgKurits
34
74 kgDostiyev
39
57 kgCajucom
41
60 kgZwaan
46
57 kgLi
58
68 kgHusted
74
68 kgCarter
79
78 kgThomsen
82
72 kg
1
66 kgKrijnsen
2
73 kgMcNeil
3
57 kgYamada
4
63 kgKawano
6
68 kgBarnhill
7
64 kgKooij
11
72 kgBocharov
12
72 kgSlamzhanov
14
64 kgZhaparuly
18
59 kgChromy
19
63 kgvan Sintmaartensdijk
20
77 kgMijnsbergen
22
68 kgAjis
24
53 kgKhatpin
32
60 kgKurits
34
74 kgDostiyev
39
57 kgCajucom
41
60 kgZwaan
46
57 kgLi
58
68 kgHusted
74
68 kgCarter
79
78 kgThomsen
82
72 kg
Weight (KG) →
Result →
78
53
1
82
# | Rider | Weight (KG) |
---|---|---|
1 | BOURGOYNE Lucas | 66 |
2 | KRIJNSEN Jelte | 73 |
3 | MCNEIL Aidan | 57 |
4 | YAMADA Takumi | 63 |
6 | KAWANO Aoki | 68 |
7 | BARNHILL Zac | 64 |
11 | KOOIJ Olav | 72 |
12 | BOCHAROV Dmitriy | 72 |
14 | SLAMZHANOV Orken | 64 |
18 | ZHAPARULY Bauyrzhan | 59 |
19 | CHROMY Kyle | 63 |
20 | VAN SINTMAARTENSDIJK Roel | 77 |
22 | MIJNSBERGEN Thomas | 68 |
24 | AJIS Muhammad Hakimi | 53 |
32 | KHATPIN Nurzhan | 60 |
34 | KURITS Joonas | 74 |
39 | DOSTIYEV Ilkhan | 57 |
41 | CAJUCOM Ean | 60 |
46 | ZWAAN Wouter | 57 |
58 | LI Ting Wei | 68 |
74 | HUSTED Eli | 68 |
79 | CARTER Nick | 78 |
82 | THOMSEN Finn | 72 |