Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Bourgoyne
1
66 kgKrijnsen
2
73 kgMcNeil
3
57 kgYamada
5
63 kgBarnhill
7
64 kgKooij
8
72 kgKurits
9
74 kgMijnsbergen
10
68 kgChromy
16
63 kgvan Sintmaartensdijk
17
77 kgKhatpin
19
60 kgZwaan
28
57 kgKawano
30
68 kgBocharov
32
72 kgCajucom
33
60 kgZhaparuly
36
59 kgDostiyev
42
57 kgAjis
45
53 kgSlamzhanov
63
64 kgHusted
65
68 kgLi
68
68 kgCarter
72
78 kgThomsen
75
72 kg
1
66 kgKrijnsen
2
73 kgMcNeil
3
57 kgYamada
5
63 kgBarnhill
7
64 kgKooij
8
72 kgKurits
9
74 kgMijnsbergen
10
68 kgChromy
16
63 kgvan Sintmaartensdijk
17
77 kgKhatpin
19
60 kgZwaan
28
57 kgKawano
30
68 kgBocharov
32
72 kgCajucom
33
60 kgZhaparuly
36
59 kgDostiyev
42
57 kgAjis
45
53 kgSlamzhanov
63
64 kgHusted
65
68 kgLi
68
68 kgCarter
72
78 kgThomsen
75
72 kg
Weight (KG) →
Result →
78
53
1
75
# | Rider | Weight (KG) |
---|---|---|
1 | BOURGOYNE Lucas | 66 |
2 | KRIJNSEN Jelte | 73 |
3 | MCNEIL Aidan | 57 |
5 | YAMADA Takumi | 63 |
7 | BARNHILL Zac | 64 |
8 | KOOIJ Olav | 72 |
9 | KURITS Joonas | 74 |
10 | MIJNSBERGEN Thomas | 68 |
16 | CHROMY Kyle | 63 |
17 | VAN SINTMAARTENSDIJK Roel | 77 |
19 | KHATPIN Nurzhan | 60 |
28 | ZWAAN Wouter | 57 |
30 | KAWANO Aoki | 68 |
32 | BOCHAROV Dmitriy | 72 |
33 | CAJUCOM Ean | 60 |
36 | ZHAPARULY Bauyrzhan | 59 |
42 | DOSTIYEV Ilkhan | 57 |
45 | AJIS Muhammad Hakimi | 53 |
63 | SLAMZHANOV Orken | 64 |
65 | HUSTED Eli | 68 |
68 | LI Ting Wei | 68 |
72 | CARTER Nick | 78 |
75 | THOMSEN Finn | 72 |