Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1 * weight + 98
This means that on average for every extra kilogram weight a rider loses -1 positions in the result.
Kooij
1
72 kgKurits
3
74 kgSlamzhanov
5
64 kgCajucom
6
60 kgKrijnsen
8
73 kgBocharov
9
72 kgKawano
10
68 kgvan Sintmaartensdijk
16
77 kgChromy
26
63 kgMijnsbergen
27
68 kgKhatpin
28
60 kgAjis
38
53 kgMcNeil
39
57 kgZwaan
40
57 kgLi
42
68 kgBarnhill
44
64 kgThomsen
49
72 kgCarter
55
78 kgDostiyev
58
57 kgYamada
64
63 kgZhaparuly
69
59 kgHusted
70
68 kg
1
72 kgKurits
3
74 kgSlamzhanov
5
64 kgCajucom
6
60 kgKrijnsen
8
73 kgBocharov
9
72 kgKawano
10
68 kgvan Sintmaartensdijk
16
77 kgChromy
26
63 kgMijnsbergen
27
68 kgKhatpin
28
60 kgAjis
38
53 kgMcNeil
39
57 kgZwaan
40
57 kgLi
42
68 kgBarnhill
44
64 kgThomsen
49
72 kgCarter
55
78 kgDostiyev
58
57 kgYamada
64
63 kgZhaparuly
69
59 kgHusted
70
68 kg
Weight (KG) →
Result →
78
53
1
70
# | Rider | Weight (KG) |
---|---|---|
1 | KOOIJ Olav | 72 |
3 | KURITS Joonas | 74 |
5 | SLAMZHANOV Orken | 64 |
6 | CAJUCOM Ean | 60 |
8 | KRIJNSEN Jelte | 73 |
9 | BOCHAROV Dmitriy | 72 |
10 | KAWANO Aoki | 68 |
16 | VAN SINTMAARTENSDIJK Roel | 77 |
26 | CHROMY Kyle | 63 |
27 | MIJNSBERGEN Thomas | 68 |
28 | KHATPIN Nurzhan | 60 |
38 | AJIS Muhammad Hakimi | 53 |
39 | MCNEIL Aidan | 57 |
40 | ZWAAN Wouter | 57 |
42 | LI Ting Wei | 68 |
44 | BARNHILL Zac | 64 |
49 | THOMSEN Finn | 72 |
55 | CARTER Nick | 78 |
58 | DOSTIYEV Ilkhan | 57 |
64 | YAMADA Takumi | 63 |
69 | ZHAPARULY Bauyrzhan | 59 |
70 | HUSTED Eli | 68 |