Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight + 3
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Lowden
2
55 kgSkalniak-Sójka
5
54 kgDe Wilde
8
62 kgPintar
12
56 kgde Boer
13
62 kgSüßemilch
15
67 kgDemey
17
56 kgOlsen
18
56 kgBecker
19
64 kgCastrique
25
63 kgPenton
29
55 kgBravec
30
56 kgGerritse
36
59 kgBuch
41
61 kgvan Bokhoven
57
51 kgRiffel
60
57 kgBaril
69
56 kgMilette
74
52 kgOosterwoud
75
60 kgde Baat
86
56 kgKuijpers
102
73 kg
2
55 kgSkalniak-Sójka
5
54 kgDe Wilde
8
62 kgPintar
12
56 kgde Boer
13
62 kgSüßemilch
15
67 kgDemey
17
56 kgOlsen
18
56 kgBecker
19
64 kgCastrique
25
63 kgPenton
29
55 kgBravec
30
56 kgGerritse
36
59 kgBuch
41
61 kgvan Bokhoven
57
51 kgRiffel
60
57 kgBaril
69
56 kgMilette
74
52 kgOosterwoud
75
60 kgde Baat
86
56 kgKuijpers
102
73 kg
Weight (KG) →
Result →
73
51
2
102
# | Rider | Weight (KG) |
---|---|---|
2 | LOWDEN Joscelin | 55 |
5 | SKALNIAK-SÓJKA Agnieszka | 54 |
8 | DE WILDE Julie | 62 |
12 | PINTAR Urška | 56 |
13 | DE BOER Manon | 62 |
15 | SÜßEMILCH Laura | 67 |
17 | DEMEY Valerie | 56 |
18 | OLSEN Elise Marie | 56 |
19 | BECKER Charlotte | 64 |
25 | CASTRIQUE Alana | 63 |
29 | PENTON Sara | 55 |
30 | BRAVEC Urška | 56 |
36 | GERRITSE Femke | 59 |
41 | BUCH Hannah | 61 |
57 | VAN BOKHOVEN Julia | 51 |
60 | RIFFEL Christa | 57 |
69 | BARIL Olivia | 56 |
74 | MILETTE Laury | 52 |
75 | OOSTERWOUD Wendy | 60 |
86 | DE BAAT Kim | 56 |
102 | KUIJPERS Evy | 73 |