Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.2 * weight - 31
This means that on average for every extra kilogram weight a rider loses 1.2 positions in the result.
De Wilde
3
62 kgBaril
4
56 kgCastrique
5
63 kgDemey
8
56 kgSkalniak-Sójka
10
54 kgPintar
14
56 kgMilette
16
52 kgLowden
19
55 kgvan Bokhoven
22
51 kgBecker
31
64 kgSüßemilch
32
67 kgOlsen
42
56 kgde Baat
48
56 kgKuijpers
54
73 kgRiffel
56
57 kgBuch
62
61 kgOosterwoud
75
60 kgGerritse
80
59 kgPenton
87
55 kgde Boer
92
62 kg
3
62 kgBaril
4
56 kgCastrique
5
63 kgDemey
8
56 kgSkalniak-Sójka
10
54 kgPintar
14
56 kgMilette
16
52 kgLowden
19
55 kgvan Bokhoven
22
51 kgBecker
31
64 kgSüßemilch
32
67 kgOlsen
42
56 kgde Baat
48
56 kgKuijpers
54
73 kgRiffel
56
57 kgBuch
62
61 kgOosterwoud
75
60 kgGerritse
80
59 kgPenton
87
55 kgde Boer
92
62 kg
Weight (KG) →
Result →
73
51
3
92
# | Rider | Weight (KG) |
---|---|---|
3 | DE WILDE Julie | 62 |
4 | BARIL Olivia | 56 |
5 | CASTRIQUE Alana | 63 |
8 | DEMEY Valerie | 56 |
10 | SKALNIAK-SÓJKA Agnieszka | 54 |
14 | PINTAR Urška | 56 |
16 | MILETTE Laury | 52 |
19 | LOWDEN Joscelin | 55 |
22 | VAN BOKHOVEN Julia | 51 |
31 | BECKER Charlotte | 64 |
32 | SÜßEMILCH Laura | 67 |
42 | OLSEN Elise Marie | 56 |
48 | DE BAAT Kim | 56 |
54 | KUIJPERS Evy | 73 |
56 | RIFFEL Christa | 57 |
62 | BUCH Hannah | 61 |
75 | OOSTERWOUD Wendy | 60 |
80 | GERRITSE Femke | 59 |
87 | PENTON Sara | 55 |
92 | DE BOER Manon | 62 |