Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 102
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Castrique
2
63 kgDemey
9
56 kgSüßemilch
12
67 kgDe Wilde
17
62 kgLowden
21
55 kgKuijpers
24
73 kgMilette
26
52 kgPintar
28
56 kgvan Bokhoven
29
51 kgBaril
31
56 kgBecker
36
64 kgBuch
50
61 kgOosterwoud
55
60 kgde Boer
57
62 kgGerritse
58
59 kgPenton
66
55 kgOlsen
67
56 kgde Baat
69
56 kgRiffel
88
57 kg
2
63 kgDemey
9
56 kgSüßemilch
12
67 kgDe Wilde
17
62 kgLowden
21
55 kgKuijpers
24
73 kgMilette
26
52 kgPintar
28
56 kgvan Bokhoven
29
51 kgBaril
31
56 kgBecker
36
64 kgBuch
50
61 kgOosterwoud
55
60 kgde Boer
57
62 kgGerritse
58
59 kgPenton
66
55 kgOlsen
67
56 kgde Baat
69
56 kgRiffel
88
57 kg
Weight (KG) →
Result →
73
51
2
88
# | Rider | Weight (KG) |
---|---|---|
2 | CASTRIQUE Alana | 63 |
9 | DEMEY Valerie | 56 |
12 | SÜßEMILCH Laura | 67 |
17 | DE WILDE Julie | 62 |
21 | LOWDEN Joscelin | 55 |
24 | KUIJPERS Evy | 73 |
26 | MILETTE Laury | 52 |
28 | PINTAR Urška | 56 |
29 | VAN BOKHOVEN Julia | 51 |
31 | BARIL Olivia | 56 |
36 | BECKER Charlotte | 64 |
50 | BUCH Hannah | 61 |
55 | OOSTERWOUD Wendy | 60 |
57 | DE BOER Manon | 62 |
58 | GERRITSE Femke | 59 |
66 | PENTON Sara | 55 |
67 | OLSEN Elise Marie | 56 |
69 | DE BAAT Kim | 56 |
88 | RIFFEL Christa | 57 |