Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 31
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Whitehouse
1
58 kgPrades
2
56 kgGarcía
3
68 kgCrawford
4
59 kgManulang
5
59 kgFelipe
8
58 kgChoe
9
63 kgJung
10
62 kgSulzberger
12
65 kgNieto
13
58 kgNovardianto
16
69 kgKangangi
17
64 kgCahyadi
20
52 kgAso
24
67 kgHibatulah
26
55 kgCuley
28
69 kgMazuki
44
57 kgSetiawan
48
61 kgWang
52
70 kgIrawan
53
51 kgWijaya
55
58 kgNakai
63
62 kgPriya Prasetya
67
62 kg
1
58 kgPrades
2
56 kgGarcía
3
68 kgCrawford
4
59 kgManulang
5
59 kgFelipe
8
58 kgChoe
9
63 kgJung
10
62 kgSulzberger
12
65 kgNieto
13
58 kgNovardianto
16
69 kgKangangi
17
64 kgCahyadi
20
52 kgAso
24
67 kgHibatulah
26
55 kgCuley
28
69 kgMazuki
44
57 kgSetiawan
48
61 kgWang
52
70 kgIrawan
53
51 kgWijaya
55
58 kgNakai
63
62 kgPriya Prasetya
67
62 kg
Weight (KG) →
Result →
70
51
1
67
# | Rider | Weight (KG) |
---|---|---|
1 | WHITEHOUSE Daniel | 58 |
2 | PRADES Benjamín | 56 |
3 | GARCÍA Ricardo | 68 |
4 | CRAWFORD Jai | 59 |
5 | MANULANG Robin | 59 |
8 | FELIPE Marcelo | 58 |
9 | CHOE Hyeong Min | 63 |
10 | JUNG Woo-Ho | 62 |
12 | SULZBERGER Wesley | 65 |
13 | NIETO Edgar | 58 |
16 | NOVARDIANTO Jamalidin | 69 |
17 | KANGANGI Suleiman | 64 |
20 | CAHYADI Aiman | 52 |
24 | ASO Keisuke | 67 |
26 | HIBATULAH Jamal | 55 |
28 | CULEY Marcus | 69 |
44 | MAZUKI Nur Amirul Fakhruddin | 57 |
48 | SETIAWAN Andreas Odie Purnama | 61 |
52 | WANG Meiyin | 70 |
53 | IRAWAN Jefri | 51 |
55 | WIJAYA Endra | 58 |
63 | NAKAI Tadaaki | 62 |
67 | PRIYA PRASETYA Heksa | 62 |