Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 50
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Whitehouse
1
58 kgPrades
2
56 kgGarcía
3
68 kgFelipe
5
58 kgCrawford
6
59 kgManulang
9
59 kgCahyadi
11
52 kgSulzberger
13
65 kgNieto
15
58 kgNovardianto
16
69 kgJung
20
62 kgCuley
21
69 kgKangangi
24
64 kgChoe
26
63 kgWang
52
70 kgHibatulah
53
55 kgAso
55
67 kgMazuki
57
57 kgWijaya
66
58 kgSetiawan
68
61 kgIrawan
70
51 kgNakai
76
62 kgPriya Prasetya
79
62 kg
1
58 kgPrades
2
56 kgGarcía
3
68 kgFelipe
5
58 kgCrawford
6
59 kgManulang
9
59 kgCahyadi
11
52 kgSulzberger
13
65 kgNieto
15
58 kgNovardianto
16
69 kgJung
20
62 kgCuley
21
69 kgKangangi
24
64 kgChoe
26
63 kgWang
52
70 kgHibatulah
53
55 kgAso
55
67 kgMazuki
57
57 kgWijaya
66
58 kgSetiawan
68
61 kgIrawan
70
51 kgNakai
76
62 kgPriya Prasetya
79
62 kg
Weight (KG) →
Result →
70
51
1
79
# | Rider | Weight (KG) |
---|---|---|
1 | WHITEHOUSE Daniel | 58 |
2 | PRADES Benjamín | 56 |
3 | GARCÍA Ricardo | 68 |
5 | FELIPE Marcelo | 58 |
6 | CRAWFORD Jai | 59 |
9 | MANULANG Robin | 59 |
11 | CAHYADI Aiman | 52 |
13 | SULZBERGER Wesley | 65 |
15 | NIETO Edgar | 58 |
16 | NOVARDIANTO Jamalidin | 69 |
20 | JUNG Woo-Ho | 62 |
21 | CULEY Marcus | 69 |
24 | KANGANGI Suleiman | 64 |
26 | CHOE Hyeong Min | 63 |
52 | WANG Meiyin | 70 |
53 | HIBATULAH Jamal | 55 |
55 | ASO Keisuke | 67 |
57 | MAZUKI Nur Amirul Fakhruddin | 57 |
66 | WIJAYA Endra | 58 |
68 | SETIAWAN Andreas Odie Purnama | 61 |
70 | IRAWAN Jefri | 51 |
76 | NAKAI Tadaaki | 62 |
79 | PRIYA PRASETYA Heksa | 62 |