Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 24
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Prades
2
56 kgChoe
3
63 kgManulang
4
59 kgCrawford
6
59 kgFelipe
7
58 kgWhitehouse
8
58 kgGarcía
9
68 kgHibatulah
14
55 kgKangangi
16
64 kgNovardianto
22
69 kgCuley
24
69 kgJung
25
62 kgSulzberger
29
65 kgNieto
30
58 kgCahyadi
32
52 kgAso
36
67 kgMazuki
40
57 kgSetiawan
45
61 kgWijaya
49
58 kgWang
58
70 kgIrawan
62
51 kgPriya Prasetya
73
62 kgNakai
76
62 kg
2
56 kgChoe
3
63 kgManulang
4
59 kgCrawford
6
59 kgFelipe
7
58 kgWhitehouse
8
58 kgGarcía
9
68 kgHibatulah
14
55 kgKangangi
16
64 kgNovardianto
22
69 kgCuley
24
69 kgJung
25
62 kgSulzberger
29
65 kgNieto
30
58 kgCahyadi
32
52 kgAso
36
67 kgMazuki
40
57 kgSetiawan
45
61 kgWijaya
49
58 kgWang
58
70 kgIrawan
62
51 kgPriya Prasetya
73
62 kgNakai
76
62 kg
Weight (KG) →
Result →
70
51
2
76
# | Rider | Weight (KG) |
---|---|---|
2 | PRADES Benjamín | 56 |
3 | CHOE Hyeong Min | 63 |
4 | MANULANG Robin | 59 |
6 | CRAWFORD Jai | 59 |
7 | FELIPE Marcelo | 58 |
8 | WHITEHOUSE Daniel | 58 |
9 | GARCÍA Ricardo | 68 |
14 | HIBATULAH Jamal | 55 |
16 | KANGANGI Suleiman | 64 |
22 | NOVARDIANTO Jamalidin | 69 |
24 | CULEY Marcus | 69 |
25 | JUNG Woo-Ho | 62 |
29 | SULZBERGER Wesley | 65 |
30 | NIETO Edgar | 58 |
32 | CAHYADI Aiman | 52 |
36 | ASO Keisuke | 67 |
40 | MAZUKI Nur Amirul Fakhruddin | 57 |
45 | SETIAWAN Andreas Odie Purnama | 61 |
49 | WIJAYA Endra | 58 |
58 | WANG Meiyin | 70 |
62 | IRAWAN Jefri | 51 |
73 | PRIYA PRASETYA Heksa | 62 |
76 | NAKAI Tadaaki | 62 |