Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 53
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Prades
2
56 kgCrawford
3
59 kgGarcía
4
68 kgFelipe
5
58 kgWhitehouse
7
58 kgManulang
9
59 kgChoe
10
63 kgNovardianto
13
69 kgHibatulah
16
55 kgCuley
18
69 kgSulzberger
19
65 kgKangangi
21
64 kgJung
24
62 kgAso
25
67 kgNieto
26
58 kgCahyadi
32
52 kgSetiawan
40
61 kgIrawan
56
51 kgWang
64
70 kgWijaya
66
58 kgPriya Prasetya
67
62 kgMazuki
70
57 kgNakai
74
62 kg
2
56 kgCrawford
3
59 kgGarcía
4
68 kgFelipe
5
58 kgWhitehouse
7
58 kgManulang
9
59 kgChoe
10
63 kgNovardianto
13
69 kgHibatulah
16
55 kgCuley
18
69 kgSulzberger
19
65 kgKangangi
21
64 kgJung
24
62 kgAso
25
67 kgNieto
26
58 kgCahyadi
32
52 kgSetiawan
40
61 kgIrawan
56
51 kgWang
64
70 kgWijaya
66
58 kgPriya Prasetya
67
62 kgMazuki
70
57 kgNakai
74
62 kg
Weight (KG) →
Result →
70
51
2
74
# | Rider | Weight (KG) |
---|---|---|
2 | PRADES Benjamín | 56 |
3 | CRAWFORD Jai | 59 |
4 | GARCÍA Ricardo | 68 |
5 | FELIPE Marcelo | 58 |
7 | WHITEHOUSE Daniel | 58 |
9 | MANULANG Robin | 59 |
10 | CHOE Hyeong Min | 63 |
13 | NOVARDIANTO Jamalidin | 69 |
16 | HIBATULAH Jamal | 55 |
18 | CULEY Marcus | 69 |
19 | SULZBERGER Wesley | 65 |
21 | KANGANGI Suleiman | 64 |
24 | JUNG Woo-Ho | 62 |
25 | ASO Keisuke | 67 |
26 | NIETO Edgar | 58 |
32 | CAHYADI Aiman | 52 |
40 | SETIAWAN Andreas Odie Purnama | 61 |
56 | IRAWAN Jefri | 51 |
64 | WANG Meiyin | 70 |
66 | WIJAYA Endra | 58 |
67 | PRIYA PRASETYA Heksa | 62 |
70 | MAZUKI Nur Amirul Fakhruddin | 57 |
74 | NAKAI Tadaaki | 62 |