Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 46
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Prades
1
56 kgGarcía
2
68 kgWhitehouse
3
58 kgJung
4
62 kgChoe
5
63 kgCrawford
8
59 kgAso
12
67 kgNieto
13
58 kgManulang
14
59 kgFelipe
15
58 kgNovardianto
20
69 kgSulzberger
22
65 kgKangangi
24
64 kgHibatulah
31
55 kgMazuki
35
57 kgCahyadi
36
52 kgCuley
43
69 kgSetiawan
46
61 kgNakai
56
62 kgWang
57
70 kgIrawan
60
51 kgWijaya
64
58 kgPriya Prasetya
65
62 kg
1
56 kgGarcía
2
68 kgWhitehouse
3
58 kgJung
4
62 kgChoe
5
63 kgCrawford
8
59 kgAso
12
67 kgNieto
13
58 kgManulang
14
59 kgFelipe
15
58 kgNovardianto
20
69 kgSulzberger
22
65 kgKangangi
24
64 kgHibatulah
31
55 kgMazuki
35
57 kgCahyadi
36
52 kgCuley
43
69 kgSetiawan
46
61 kgNakai
56
62 kgWang
57
70 kgIrawan
60
51 kgWijaya
64
58 kgPriya Prasetya
65
62 kg
Weight (KG) →
Result →
70
51
1
65
# | Rider | Weight (KG) |
---|---|---|
1 | PRADES Benjamín | 56 |
2 | GARCÍA Ricardo | 68 |
3 | WHITEHOUSE Daniel | 58 |
4 | JUNG Woo-Ho | 62 |
5 | CHOE Hyeong Min | 63 |
8 | CRAWFORD Jai | 59 |
12 | ASO Keisuke | 67 |
13 | NIETO Edgar | 58 |
14 | MANULANG Robin | 59 |
15 | FELIPE Marcelo | 58 |
20 | NOVARDIANTO Jamalidin | 69 |
22 | SULZBERGER Wesley | 65 |
24 | KANGANGI Suleiman | 64 |
31 | HIBATULAH Jamal | 55 |
35 | MAZUKI Nur Amirul Fakhruddin | 57 |
36 | CAHYADI Aiman | 52 |
43 | CULEY Marcus | 69 |
46 | SETIAWAN Andreas Odie Purnama | 61 |
56 | NAKAI Tadaaki | 62 |
57 | WANG Meiyin | 70 |
60 | IRAWAN Jefri | 51 |
64 | WIJAYA Endra | 58 |
65 | PRIYA PRASETYA Heksa | 62 |