Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 111
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Karstens
4
74 kgGodefroot
5
73 kgMerckx
6
74 kgMoser
11
79 kgAllan
14
73 kgOvion
15
64 kgDemeyer
16
85 kgViejo
21
64 kgKuiper
22
69 kgRitter
30
74 kgBourreau
34
63 kgVan Impe
40
59 kgRodríguez
43
70 kgZoetemelk
48
68 kgGimondi
55
78 kgPoulidor
56
71 kgPollentier
65
62 kgden Hertog
71
76 kgMartin
76
62 kg
4
74 kgGodefroot
5
73 kgMerckx
6
74 kgMoser
11
79 kgAllan
14
73 kgOvion
15
64 kgDemeyer
16
85 kgViejo
21
64 kgKuiper
22
69 kgRitter
30
74 kgBourreau
34
63 kgVan Impe
40
59 kgRodríguez
43
70 kgZoetemelk
48
68 kgGimondi
55
78 kgPoulidor
56
71 kgPollentier
65
62 kgden Hertog
71
76 kgMartin
76
62 kg
Weight (KG) →
Result →
85
59
4
76
# | Rider | Weight (KG) |
---|---|---|
4 | KARSTENS Gerben | 74 |
5 | GODEFROOT Walter | 73 |
6 | MERCKX Eddy | 74 |
11 | MOSER Francesco | 79 |
14 | ALLAN Donald | 73 |
15 | OVION Régis | 64 |
16 | DEMEYER Marc | 85 |
21 | VIEJO José Luis | 64 |
22 | KUIPER Hennie | 69 |
30 | RITTER Ole | 74 |
34 | BOURREAU Bernard | 63 |
40 | VAN IMPE Lucien | 59 |
43 | RODRÍGUEZ Martín Emilio | 70 |
48 | ZOETEMELK Joop | 68 |
55 | GIMONDI Felice | 78 |
56 | POULIDOR Raymond | 71 |
65 | POLLENTIER Michel | 62 |
71 | DEN HERTOG Fedor | 76 |
76 | MARTIN Raymond | 62 |