Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 87
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Karstens
3
74 kgGodefroot
5
73 kgMoser
15
79 kgDemeyer
16
85 kgBourreau
20
63 kgOvion
22
64 kgAllan
24
73 kgKuiper
26
69 kgViejo
31
64 kgRitter
32
74 kgPollentier
37
62 kgRodríguez
42
70 kgGimondi
48
78 kgVan Impe
56
59 kgMerckx
57
74 kgPoulidor
58
71 kgZoetemelk
61
68 kgMartin
72
62 kgden Hertog
89
76 kg
3
74 kgGodefroot
5
73 kgMoser
15
79 kgDemeyer
16
85 kgBourreau
20
63 kgOvion
22
64 kgAllan
24
73 kgKuiper
26
69 kgViejo
31
64 kgRitter
32
74 kgPollentier
37
62 kgRodríguez
42
70 kgGimondi
48
78 kgVan Impe
56
59 kgMerckx
57
74 kgPoulidor
58
71 kgZoetemelk
61
68 kgMartin
72
62 kgden Hertog
89
76 kg
Weight (KG) →
Result →
85
59
3
89
# | Rider | Weight (KG) |
---|---|---|
3 | KARSTENS Gerben | 74 |
5 | GODEFROOT Walter | 73 |
15 | MOSER Francesco | 79 |
16 | DEMEYER Marc | 85 |
20 | BOURREAU Bernard | 63 |
22 | OVION Régis | 64 |
24 | ALLAN Donald | 73 |
26 | KUIPER Hennie | 69 |
31 | VIEJO José Luis | 64 |
32 | RITTER Ole | 74 |
37 | POLLENTIER Michel | 62 |
42 | RODRÍGUEZ Martín Emilio | 70 |
48 | GIMONDI Felice | 78 |
56 | VAN IMPE Lucien | 59 |
57 | MERCKX Eddy | 74 |
58 | POULIDOR Raymond | 71 |
61 | ZOETEMELK Joop | 68 |
72 | MARTIN Raymond | 62 |
89 | DEN HERTOG Fedor | 76 |