Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 122
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Karstens
2
74 kgMoser
4
79 kgDemeyer
7
85 kgKuiper
13
69 kgRitter
15
74 kgZoetemelk
32
68 kgPollentier
33
62 kgAllan
38
73 kgMerckx
40
74 kgViejo
42
64 kgOvion
43
64 kgVan Impe
46
59 kgPoulidor
47
71 kgBourreau
59
63 kgGimondi
60
78 kgMartin
71
62 kgden Hertog
74
76 kgRodríguez
81
70 kgGodefroot
84
73 kg
2
74 kgMoser
4
79 kgDemeyer
7
85 kgKuiper
13
69 kgRitter
15
74 kgZoetemelk
32
68 kgPollentier
33
62 kgAllan
38
73 kgMerckx
40
74 kgViejo
42
64 kgOvion
43
64 kgVan Impe
46
59 kgPoulidor
47
71 kgBourreau
59
63 kgGimondi
60
78 kgMartin
71
62 kgden Hertog
74
76 kgRodríguez
81
70 kgGodefroot
84
73 kg
Weight (KG) →
Result →
85
59
2
84
# | Rider | Weight (KG) |
---|---|---|
2 | KARSTENS Gerben | 74 |
4 | MOSER Francesco | 79 |
7 | DEMEYER Marc | 85 |
13 | KUIPER Hennie | 69 |
15 | RITTER Ole | 74 |
32 | ZOETEMELK Joop | 68 |
33 | POLLENTIER Michel | 62 |
38 | ALLAN Donald | 73 |
40 | MERCKX Eddy | 74 |
42 | VIEJO José Luis | 64 |
43 | OVION Régis | 64 |
46 | VAN IMPE Lucien | 59 |
47 | POULIDOR Raymond | 71 |
59 | BOURREAU Bernard | 63 |
60 | GIMONDI Felice | 78 |
71 | MARTIN Raymond | 62 |
74 | DEN HERTOG Fedor | 76 |
81 | RODRÍGUEZ Martín Emilio | 70 |
84 | GODEFROOT Walter | 73 |