Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 3 * weight - 165
This means that on average for every extra kilogram weight a rider loses 3 positions in the result.
Van Impe
1
59 kgZoetemelk
2
68 kgPoulidor
3
71 kgRiccomi
5
66 kgPollentier
7
62 kgMaertens
8
65 kgMartin
15
62 kgOvion
28
64 kgBourreau
30
63 kgViejo
31
64 kgLasa
34
68 kgSchmid
51
64 kgDemeyer
56
85 kgGavazzi
63
67 kgKnudsen
64
79 kgBracke
77
79 kgRaas
83
72 kgKarstens
84
74 kgvan den Hoek
87
77 kg
1
59 kgZoetemelk
2
68 kgPoulidor
3
71 kgRiccomi
5
66 kgPollentier
7
62 kgMaertens
8
65 kgMartin
15
62 kgOvion
28
64 kgBourreau
30
63 kgViejo
31
64 kgLasa
34
68 kgSchmid
51
64 kgDemeyer
56
85 kgGavazzi
63
67 kgKnudsen
64
79 kgBracke
77
79 kgRaas
83
72 kgKarstens
84
74 kgvan den Hoek
87
77 kg
Weight (KG) →
Result →
85
59
1
87
# | Rider | Weight (KG) |
---|---|---|
1 | VAN IMPE Lucien | 59 |
2 | ZOETEMELK Joop | 68 |
3 | POULIDOR Raymond | 71 |
5 | RICCOMI Walter | 66 |
7 | POLLENTIER Michel | 62 |
8 | MAERTENS Freddy | 65 |
15 | MARTIN Raymond | 62 |
28 | OVION Régis | 64 |
30 | BOURREAU Bernard | 63 |
31 | VIEJO José Luis | 64 |
34 | LASA Miguel María | 68 |
51 | SCHMID Iwan | 64 |
56 | DEMEYER Marc | 85 |
63 | GAVAZZI Pierino | 67 |
64 | KNUDSEN Knut | 79 |
77 | BRACKE Ferdinand | 79 |
83 | RAAS Jan | 72 |
84 | KARSTENS Gerben | 74 |
87 | VAN DEN HOEK Aad | 77 |