Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 47
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Maertens
1
65 kgRaas
5
72 kgOvion
9
64 kgGavazzi
13
67 kgvan den Hoek
21
77 kgRiccomi
26
66 kgDemeyer
29
85 kgLasa
34
68 kgViejo
36
64 kgPollentier
37
62 kgKnudsen
40
79 kgPoulidor
41
71 kgBourreau
43
63 kgKarstens
45
74 kgSchmid
49
64 kgVan Impe
58
59 kgZoetemelk
61
68 kgBracke
77
79 kgMartin
80
62 kg
1
65 kgRaas
5
72 kgOvion
9
64 kgGavazzi
13
67 kgvan den Hoek
21
77 kgRiccomi
26
66 kgDemeyer
29
85 kgLasa
34
68 kgViejo
36
64 kgPollentier
37
62 kgKnudsen
40
79 kgPoulidor
41
71 kgBourreau
43
63 kgKarstens
45
74 kgSchmid
49
64 kgVan Impe
58
59 kgZoetemelk
61
68 kgBracke
77
79 kgMartin
80
62 kg
Weight (KG) →
Result →
85
59
1
80
# | Rider | Weight (KG) |
---|---|---|
1 | MAERTENS Freddy | 65 |
5 | RAAS Jan | 72 |
9 | OVION Régis | 64 |
13 | GAVAZZI Pierino | 67 |
21 | VAN DEN HOEK Aad | 77 |
26 | RICCOMI Walter | 66 |
29 | DEMEYER Marc | 85 |
34 | LASA Miguel María | 68 |
36 | VIEJO José Luis | 64 |
37 | POLLENTIER Michel | 62 |
40 | KNUDSEN Knut | 79 |
41 | POULIDOR Raymond | 71 |
43 | BOURREAU Bernard | 63 |
45 | KARSTENS Gerben | 74 |
49 | SCHMID Iwan | 64 |
58 | VAN IMPE Lucien | 59 |
61 | ZOETEMELK Joop | 68 |
77 | BRACKE Ferdinand | 79 |
80 | MARTIN Raymond | 62 |