Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight + 8
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Karstens
1
74 kgMaertens
2
65 kgOvion
14
64 kgDemeyer
20
85 kgSchmid
22
64 kgRiccomi
23
66 kgGavazzi
24
67 kgViejo
25
64 kgRaas
26
72 kgvan den Hoek
28
77 kgPoulidor
34
71 kgPollentier
37
62 kgVan Impe
40
59 kgBourreau
42
63 kgLasa
51
68 kgMartin
62
62 kgKnudsen
63
79 kgZoetemelk
78
68 kgBracke
87
79 kg
1
74 kgMaertens
2
65 kgOvion
14
64 kgDemeyer
20
85 kgSchmid
22
64 kgRiccomi
23
66 kgGavazzi
24
67 kgViejo
25
64 kgRaas
26
72 kgvan den Hoek
28
77 kgPoulidor
34
71 kgPollentier
37
62 kgVan Impe
40
59 kgBourreau
42
63 kgLasa
51
68 kgMartin
62
62 kgKnudsen
63
79 kgZoetemelk
78
68 kgBracke
87
79 kg
Weight (KG) →
Result →
85
59
1
87
# | Rider | Weight (KG) |
---|---|---|
1 | KARSTENS Gerben | 74 |
2 | MAERTENS Freddy | 65 |
14 | OVION Régis | 64 |
20 | DEMEYER Marc | 85 |
22 | SCHMID Iwan | 64 |
23 | RICCOMI Walter | 66 |
24 | GAVAZZI Pierino | 67 |
25 | VIEJO José Luis | 64 |
26 | RAAS Jan | 72 |
28 | VAN DEN HOEK Aad | 77 |
34 | POULIDOR Raymond | 71 |
37 | POLLENTIER Michel | 62 |
40 | VAN IMPE Lucien | 59 |
42 | BOURREAU Bernard | 63 |
51 | LASA Miguel María | 68 |
62 | MARTIN Raymond | 62 |
63 | KNUDSEN Knut | 79 |
78 | ZOETEMELK Joop | 68 |
87 | BRACKE Ferdinand | 79 |