Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.7 * weight - 68
This means that on average for every extra kilogram weight a rider loses 1.7 positions in the result.
Martin
10
62 kgMaertens
12
65 kgGavazzi
16
67 kgLasa
22
68 kgViejo
27
64 kgPoulidor
31
71 kgPollentier
32
62 kgRiccomi
34
66 kgKarstens
35
74 kgVan Impe
44
59 kgDemeyer
46
85 kgZoetemelk
47
68 kgBourreau
48
63 kgSchmid
70
64 kgOvion
73
64 kgKnudsen
77
79 kgBracke
83
79 kgRaas
85
72 kgvan den Hoek
87
77 kg
10
62 kgMaertens
12
65 kgGavazzi
16
67 kgLasa
22
68 kgViejo
27
64 kgPoulidor
31
71 kgPollentier
32
62 kgRiccomi
34
66 kgKarstens
35
74 kgVan Impe
44
59 kgDemeyer
46
85 kgZoetemelk
47
68 kgBourreau
48
63 kgSchmid
70
64 kgOvion
73
64 kgKnudsen
77
79 kgBracke
83
79 kgRaas
85
72 kgvan den Hoek
87
77 kg
Weight (KG) →
Result →
85
59
10
87
# | Rider | Weight (KG) |
---|---|---|
10 | MARTIN Raymond | 62 |
12 | MAERTENS Freddy | 65 |
16 | GAVAZZI Pierino | 67 |
22 | LASA Miguel María | 68 |
27 | VIEJO José Luis | 64 |
31 | POULIDOR Raymond | 71 |
32 | POLLENTIER Michel | 62 |
34 | RICCOMI Walter | 66 |
35 | KARSTENS Gerben | 74 |
44 | VAN IMPE Lucien | 59 |
46 | DEMEYER Marc | 85 |
47 | ZOETEMELK Joop | 68 |
48 | BOURREAU Bernard | 63 |
70 | SCHMID Iwan | 64 |
73 | OVION Régis | 64 |
77 | KNUDSEN Knut | 79 |
83 | BRACKE Ferdinand | 79 |
85 | RAAS Jan | 72 |
87 | VAN DEN HOEK Aad | 77 |