Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.3 * weight - 117
This means that on average for every extra kilogram weight a rider loses 2.3 positions in the result.
Zoetemelk
1
68 kgVan Impe
2
59 kgPoulidor
4
71 kgRiccomi
5
66 kgMartin
7
62 kgPollentier
12
62 kgMaertens
17
65 kgBourreau
29
63 kgOvion
33
64 kgKarstens
40
74 kgLasa
49
68 kgDemeyer
54
85 kgRaas
55
72 kgSchmid
56
64 kgBracke
61
79 kgViejo
63
64 kgKnudsen
79
79 kgGavazzi
81
67 kgvan den Hoek
87
77 kg
1
68 kgVan Impe
2
59 kgPoulidor
4
71 kgRiccomi
5
66 kgMartin
7
62 kgPollentier
12
62 kgMaertens
17
65 kgBourreau
29
63 kgOvion
33
64 kgKarstens
40
74 kgLasa
49
68 kgDemeyer
54
85 kgRaas
55
72 kgSchmid
56
64 kgBracke
61
79 kgViejo
63
64 kgKnudsen
79
79 kgGavazzi
81
67 kgvan den Hoek
87
77 kg
Weight (KG) →
Result →
85
59
1
87
# | Rider | Weight (KG) |
---|---|---|
1 | ZOETEMELK Joop | 68 |
2 | VAN IMPE Lucien | 59 |
4 | POULIDOR Raymond | 71 |
5 | RICCOMI Walter | 66 |
7 | MARTIN Raymond | 62 |
12 | POLLENTIER Michel | 62 |
17 | MAERTENS Freddy | 65 |
29 | BOURREAU Bernard | 63 |
33 | OVION Régis | 64 |
40 | KARSTENS Gerben | 74 |
49 | LASA Miguel María | 68 |
54 | DEMEYER Marc | 85 |
55 | RAAS Jan | 72 |
56 | SCHMID Iwan | 64 |
61 | BRACKE Ferdinand | 79 |
63 | VIEJO José Luis | 64 |
79 | KNUDSEN Knut | 79 |
81 | GAVAZZI Pierino | 67 |
87 | VAN DEN HOEK Aad | 77 |