Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 39
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
Karstens
1
74 kgMaertens
2
65 kgGavazzi
3
67 kgZoetemelk
12
68 kgViejo
24
64 kgOvion
28
64 kgLasa
30
68 kgBourreau
32
63 kgPoulidor
35
71 kgvan den Hoek
39
77 kgPollentier
41
62 kgMartin
48
62 kgVan Impe
50
59 kgRaas
59
72 kgRiccomi
64
66 kgBracke
70
79 kgKnudsen
71
79 kgDemeyer
74
85 kgSchmid
77
64 kg
1
74 kgMaertens
2
65 kgGavazzi
3
67 kgZoetemelk
12
68 kgViejo
24
64 kgOvion
28
64 kgLasa
30
68 kgBourreau
32
63 kgPoulidor
35
71 kgvan den Hoek
39
77 kgPollentier
41
62 kgMartin
48
62 kgVan Impe
50
59 kgRaas
59
72 kgRiccomi
64
66 kgBracke
70
79 kgKnudsen
71
79 kgDemeyer
74
85 kgSchmid
77
64 kg
Weight (KG) →
Result →
85
59
1
77
# | Rider | Weight (KG) |
---|---|---|
1 | KARSTENS Gerben | 74 |
2 | MAERTENS Freddy | 65 |
3 | GAVAZZI Pierino | 67 |
12 | ZOETEMELK Joop | 68 |
24 | VIEJO José Luis | 64 |
28 | OVION Régis | 64 |
30 | LASA Miguel María | 68 |
32 | BOURREAU Bernard | 63 |
35 | POULIDOR Raymond | 71 |
39 | VAN DEN HOEK Aad | 77 |
41 | POLLENTIER Michel | 62 |
48 | MARTIN Raymond | 62 |
50 | VAN IMPE Lucien | 59 |
59 | RAAS Jan | 72 |
64 | RICCOMI Walter | 66 |
70 | BRACKE Ferdinand | 79 |
71 | KNUDSEN Knut | 79 |
74 | DEMEYER Marc | 85 |
77 | SCHMID Iwan | 64 |