Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.5 * weight - 133
This means that on average for every extra kilogram weight a rider loses 2.5 positions in the result.
Thaler
5
60 kgMerckx
8
74 kgVan Impe
10
59 kgBourreau
14
63 kgZoetemelk
20
68 kgAja
32
66 kgOvion
38
64 kgNickson
40
76 kgKuiper
41
69 kgden Hertog
43
76 kgRosiers
50
78 kgMartin
54
62 kgBracke
65
79 kgSercu
73
76 kgSchuiten
78
83 kgRaas
79
72 kgKarstens
83
74 kgvan den Hoek
89
77 kg
5
60 kgMerckx
8
74 kgVan Impe
10
59 kgBourreau
14
63 kgZoetemelk
20
68 kgAja
32
66 kgOvion
38
64 kgNickson
40
76 kgKuiper
41
69 kgden Hertog
43
76 kgRosiers
50
78 kgMartin
54
62 kgBracke
65
79 kgSercu
73
76 kgSchuiten
78
83 kgRaas
79
72 kgKarstens
83
74 kgvan den Hoek
89
77 kg
Weight (KG) →
Result →
83
59
5
89
# | Rider | Weight (KG) |
---|---|---|
5 | THALER Klaus-Peter | 60 |
8 | MERCKX Eddy | 74 |
10 | VAN IMPE Lucien | 59 |
14 | BOURREAU Bernard | 63 |
20 | ZOETEMELK Joop | 68 |
32 | AJA Gonzalo | 66 |
38 | OVION Régis | 64 |
40 | NICKSON Bill | 76 |
41 | KUIPER Hennie | 69 |
43 | DEN HERTOG Fedor | 76 |
50 | ROSIERS Roger | 78 |
54 | MARTIN Raymond | 62 |
65 | BRACKE Ferdinand | 79 |
73 | SERCU Patrick | 76 |
78 | SCHUITEN Roy | 83 |
79 | RAAS Jan | 72 |
83 | KARSTENS Gerben | 74 |
89 | VAN DEN HOEK Aad | 77 |