Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
den Hertog
1
76 kgKarstens
6
74 kgThaler
7
60 kgSercu
11
76 kgNickson
20
76 kgOvion
22
64 kgBourreau
25
63 kgRosiers
42
78 kgKuiper
52
69 kgMerckx
55
74 kgVan Impe
56
59 kgZoetemelk
57
68 kgAja
69
66 kgSchuiten
72
83 kgMartin
74
62 kgBracke
79
79 kgvan den Hoek
93
77 kgRaas
95
72 kg
1
76 kgKarstens
6
74 kgThaler
7
60 kgSercu
11
76 kgNickson
20
76 kgOvion
22
64 kgBourreau
25
63 kgRosiers
42
78 kgKuiper
52
69 kgMerckx
55
74 kgVan Impe
56
59 kgZoetemelk
57
68 kgAja
69
66 kgSchuiten
72
83 kgMartin
74
62 kgBracke
79
79 kgvan den Hoek
93
77 kgRaas
95
72 kg
Weight (KG) →
Result →
83
59
1
95
# | Rider | Weight (KG) |
---|---|---|
1 | DEN HERTOG Fedor | 76 |
6 | KARSTENS Gerben | 74 |
7 | THALER Klaus-Peter | 60 |
11 | SERCU Patrick | 76 |
20 | NICKSON Bill | 76 |
22 | OVION Régis | 64 |
25 | BOURREAU Bernard | 63 |
42 | ROSIERS Roger | 78 |
52 | KUIPER Hennie | 69 |
55 | MERCKX Eddy | 74 |
56 | VAN IMPE Lucien | 59 |
57 | ZOETEMELK Joop | 68 |
69 | AJA Gonzalo | 66 |
72 | SCHUITEN Roy | 83 |
74 | MARTIN Raymond | 62 |
79 | BRACKE Ferdinand | 79 |
93 | VAN DEN HOEK Aad | 77 |
95 | RAAS Jan | 72 |