Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 131
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Schuiten
2
83 kgSercu
3
76 kgKarstens
4
74 kgKuiper
22
69 kgBourreau
30
63 kgVan Impe
35
59 kgMerckx
38
74 kgRosiers
40
78 kgAja
45
66 kgZoetemelk
47
68 kgNickson
61
76 kgBracke
67
79 kgden Hertog
71
76 kgMartin
76
62 kgRaas
81
72 kgOvion
91
64 kgThaler
92
60 kgvan den Hoek
95
77 kg
2
83 kgSercu
3
76 kgKarstens
4
74 kgKuiper
22
69 kgBourreau
30
63 kgVan Impe
35
59 kgMerckx
38
74 kgRosiers
40
78 kgAja
45
66 kgZoetemelk
47
68 kgNickson
61
76 kgBracke
67
79 kgden Hertog
71
76 kgMartin
76
62 kgRaas
81
72 kgOvion
91
64 kgThaler
92
60 kgvan den Hoek
95
77 kg
Weight (KG) →
Result →
83
59
2
95
# | Rider | Weight (KG) |
---|---|---|
2 | SCHUITEN Roy | 83 |
3 | SERCU Patrick | 76 |
4 | KARSTENS Gerben | 74 |
22 | KUIPER Hennie | 69 |
30 | BOURREAU Bernard | 63 |
35 | VAN IMPE Lucien | 59 |
38 | MERCKX Eddy | 74 |
40 | ROSIERS Roger | 78 |
45 | AJA Gonzalo | 66 |
47 | ZOETEMELK Joop | 68 |
61 | NICKSON Bill | 76 |
67 | BRACKE Ferdinand | 79 |
71 | DEN HERTOG Fedor | 76 |
76 | MARTIN Raymond | 62 |
81 | RAAS Jan | 72 |
91 | OVION Régis | 64 |
92 | THALER Klaus-Peter | 60 |
95 | VAN DEN HOEK Aad | 77 |