Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.5 * weight - 63
This means that on average for every extra kilogram weight a rider loses 1.5 positions in the result.
Sercu
1
76 kgThaler
5
60 kgOvion
8
64 kgRosiers
13
78 kgMerckx
16
74 kgKuiper
21
69 kgZoetemelk
24
68 kgVan Impe
25
59 kgBourreau
33
63 kgBracke
39
79 kgAja
50
66 kgNickson
53
76 kgMartin
72
62 kgSchuiten
77
83 kgvan den Hoek
81
77 kgden Hertog
86
76 kgRaas
87
72 kgKarstens
94
74 kg
1
76 kgThaler
5
60 kgOvion
8
64 kgRosiers
13
78 kgMerckx
16
74 kgKuiper
21
69 kgZoetemelk
24
68 kgVan Impe
25
59 kgBourreau
33
63 kgBracke
39
79 kgAja
50
66 kgNickson
53
76 kgMartin
72
62 kgSchuiten
77
83 kgvan den Hoek
81
77 kgden Hertog
86
76 kgRaas
87
72 kgKarstens
94
74 kg
Weight (KG) →
Result →
83
59
1
94
# | Rider | Weight (KG) |
---|---|---|
1 | SERCU Patrick | 76 |
5 | THALER Klaus-Peter | 60 |
8 | OVION Régis | 64 |
13 | ROSIERS Roger | 78 |
16 | MERCKX Eddy | 74 |
21 | KUIPER Hennie | 69 |
24 | ZOETEMELK Joop | 68 |
25 | VAN IMPE Lucien | 59 |
33 | BOURREAU Bernard | 63 |
39 | BRACKE Ferdinand | 79 |
50 | AJA Gonzalo | 66 |
53 | NICKSON Bill | 76 |
72 | MARTIN Raymond | 62 |
77 | SCHUITEN Roy | 83 |
81 | VAN DEN HOEK Aad | 77 |
86 | DEN HERTOG Fedor | 76 |
87 | RAAS Jan | 72 |
94 | KARSTENS Gerben | 74 |