Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 20
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Sercu
1
76 kgKarstens
6
74 kgOvion
12
64 kgThaler
13
60 kgRosiers
19
78 kgNickson
21
76 kgBourreau
22
63 kgMerckx
23
74 kgKuiper
39
69 kgSchuiten
43
83 kgZoetemelk
44
68 kgVan Impe
46
59 kgvan den Hoek
51
77 kgAja
54
66 kgBracke
67
79 kgMartin
72
62 kgRaas
73
72 kgden Hertog
95
76 kg
1
76 kgKarstens
6
74 kgOvion
12
64 kgThaler
13
60 kgRosiers
19
78 kgNickson
21
76 kgBourreau
22
63 kgMerckx
23
74 kgKuiper
39
69 kgSchuiten
43
83 kgZoetemelk
44
68 kgVan Impe
46
59 kgvan den Hoek
51
77 kgAja
54
66 kgBracke
67
79 kgMartin
72
62 kgRaas
73
72 kgden Hertog
95
76 kg
Weight (KG) →
Result →
83
59
1
95
# | Rider | Weight (KG) |
---|---|---|
1 | SERCU Patrick | 76 |
6 | KARSTENS Gerben | 74 |
12 | OVION Régis | 64 |
13 | THALER Klaus-Peter | 60 |
19 | ROSIERS Roger | 78 |
21 | NICKSON Bill | 76 |
22 | BOURREAU Bernard | 63 |
23 | MERCKX Eddy | 74 |
39 | KUIPER Hennie | 69 |
43 | SCHUITEN Roy | 83 |
44 | ZOETEMELK Joop | 68 |
46 | VAN IMPE Lucien | 59 |
51 | VAN DEN HOEK Aad | 77 |
54 | AJA Gonzalo | 66 |
67 | BRACKE Ferdinand | 79 |
72 | MARTIN Raymond | 62 |
73 | RAAS Jan | 72 |
95 | DEN HERTOG Fedor | 76 |