Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.7 * weight - 143
This means that on average for every extra kilogram weight a rider loses 2.7 positions in the result.
Merckx
3
74 kgVan Impe
6
59 kgAja
8
66 kgKuiper
10
69 kgZoetemelk
11
68 kgMartin
18
62 kgBourreau
47
63 kgNickson
52
76 kgBracke
57
79 kgOvion
58
64 kgThaler
59
60 kgKarstens
62
74 kgRosiers
76
78 kgSercu
87
76 kgSchuiten
89
83 kgRaas
90
72 kgvan den Hoek
91
77 kgden Hertog
98
76 kg
3
74 kgVan Impe
6
59 kgAja
8
66 kgKuiper
10
69 kgZoetemelk
11
68 kgMartin
18
62 kgBourreau
47
63 kgNickson
52
76 kgBracke
57
79 kgOvion
58
64 kgThaler
59
60 kgKarstens
62
74 kgRosiers
76
78 kgSercu
87
76 kgSchuiten
89
83 kgRaas
90
72 kgvan den Hoek
91
77 kgden Hertog
98
76 kg
Weight (KG) →
Result →
83
59
3
98
# | Rider | Weight (KG) |
---|---|---|
3 | MERCKX Eddy | 74 |
6 | VAN IMPE Lucien | 59 |
8 | AJA Gonzalo | 66 |
10 | KUIPER Hennie | 69 |
11 | ZOETEMELK Joop | 68 |
18 | MARTIN Raymond | 62 |
47 | BOURREAU Bernard | 63 |
52 | NICKSON Bill | 76 |
57 | BRACKE Ferdinand | 79 |
58 | OVION Régis | 64 |
59 | THALER Klaus-Peter | 60 |
62 | KARSTENS Gerben | 74 |
76 | ROSIERS Roger | 78 |
87 | SERCU Patrick | 76 |
89 | SCHUITEN Roy | 83 |
90 | RAAS Jan | 72 |
91 | VAN DEN HOEK Aad | 77 |
98 | DEN HERTOG Fedor | 76 |