Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.5 * weight - 58
This means that on average for every extra kilogram weight a rider loses 1.5 positions in the result.
Sercu
3
76 kgThaler
7
60 kgRaas
8
72 kgKarstens
11
74 kgBourreau
14
63 kgOvion
20
64 kgKuiper
30
69 kgNickson
37
76 kgAja
43
66 kgRosiers
45
78 kgZoetemelk
47
68 kgVan Impe
68
59 kgMerckx
71
74 kgMartin
76
62 kgSchuiten
77
83 kgden Hertog
88
76 kgBracke
93
79 kgvan den Hoek
95
77 kg
3
76 kgThaler
7
60 kgRaas
8
72 kgKarstens
11
74 kgBourreau
14
63 kgOvion
20
64 kgKuiper
30
69 kgNickson
37
76 kgAja
43
66 kgRosiers
45
78 kgZoetemelk
47
68 kgVan Impe
68
59 kgMerckx
71
74 kgMartin
76
62 kgSchuiten
77
83 kgden Hertog
88
76 kgBracke
93
79 kgvan den Hoek
95
77 kg
Weight (KG) →
Result →
83
59
3
95
# | Rider | Weight (KG) |
---|---|---|
3 | SERCU Patrick | 76 |
7 | THALER Klaus-Peter | 60 |
8 | RAAS Jan | 72 |
11 | KARSTENS Gerben | 74 |
14 | BOURREAU Bernard | 63 |
20 | OVION Régis | 64 |
30 | KUIPER Hennie | 69 |
37 | NICKSON Bill | 76 |
43 | AJA Gonzalo | 66 |
45 | ROSIERS Roger | 78 |
47 | ZOETEMELK Joop | 68 |
68 | VAN IMPE Lucien | 59 |
71 | MERCKX Eddy | 74 |
76 | MARTIN Raymond | 62 |
77 | SCHUITEN Roy | 83 |
88 | DEN HERTOG Fedor | 76 |
93 | BRACKE Ferdinand | 79 |
95 | VAN DEN HOEK Aad | 77 |