Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.2 * weight - 34
This means that on average for every extra kilogram weight a rider loses 1.2 positions in the result.
Thaler
12
60 kgOvion
17
64 kgMerckx
18
74 kgNickson
23
76 kgBourreau
28
63 kgKuiper
32
69 kgBracke
38
79 kgVan Impe
49
59 kgAja
53
66 kgSchuiten
54
83 kgZoetemelk
56
68 kgRosiers
61
78 kgden Hertog
63
76 kgMartin
76
62 kgSercu
84
76 kgKarstens
86
74 kgRaas
92
72 kgvan den Hoek
96
77 kg
12
60 kgOvion
17
64 kgMerckx
18
74 kgNickson
23
76 kgBourreau
28
63 kgKuiper
32
69 kgBracke
38
79 kgVan Impe
49
59 kgAja
53
66 kgSchuiten
54
83 kgZoetemelk
56
68 kgRosiers
61
78 kgden Hertog
63
76 kgMartin
76
62 kgSercu
84
76 kgKarstens
86
74 kgRaas
92
72 kgvan den Hoek
96
77 kg
Weight (KG) →
Result →
83
59
12
96
# | Rider | Weight (KG) |
---|---|---|
12 | THALER Klaus-Peter | 60 |
17 | OVION Régis | 64 |
18 | MERCKX Eddy | 74 |
23 | NICKSON Bill | 76 |
28 | BOURREAU Bernard | 63 |
32 | KUIPER Hennie | 69 |
38 | BRACKE Ferdinand | 79 |
49 | VAN IMPE Lucien | 59 |
53 | AJA Gonzalo | 66 |
54 | SCHUITEN Roy | 83 |
56 | ZOETEMELK Joop | 68 |
61 | ROSIERS Roger | 78 |
63 | DEN HERTOG Fedor | 76 |
76 | MARTIN Raymond | 62 |
84 | SERCU Patrick | 76 |
86 | KARSTENS Gerben | 74 |
92 | RAAS Jan | 72 |
96 | VAN DEN HOEK Aad | 77 |