Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 41
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Karstens
2
74 kgSercu
3
76 kgThaler
6
60 kgOvion
11
64 kgBourreau
13
63 kgRosiers
24
78 kgRaas
26
72 kgKuiper
30
69 kgNickson
37
76 kgBracke
38
79 kgVan Impe
39
59 kgSchuiten
41
83 kgden Hertog
46
76 kgZoetemelk
47
68 kgvan den Hoek
60
77 kgMerckx
75
74 kgAja
77
66 kgMartin
92
62 kg
2
74 kgSercu
3
76 kgThaler
6
60 kgOvion
11
64 kgBourreau
13
63 kgRosiers
24
78 kgRaas
26
72 kgKuiper
30
69 kgNickson
37
76 kgBracke
38
79 kgVan Impe
39
59 kgSchuiten
41
83 kgden Hertog
46
76 kgZoetemelk
47
68 kgvan den Hoek
60
77 kgMerckx
75
74 kgAja
77
66 kgMartin
92
62 kg
Weight (KG) →
Result →
83
59
2
92
# | Rider | Weight (KG) |
---|---|---|
2 | KARSTENS Gerben | 74 |
3 | SERCU Patrick | 76 |
6 | THALER Klaus-Peter | 60 |
11 | OVION Régis | 64 |
13 | BOURREAU Bernard | 63 |
24 | ROSIERS Roger | 78 |
26 | RAAS Jan | 72 |
30 | KUIPER Hennie | 69 |
37 | NICKSON Bill | 76 |
38 | BRACKE Ferdinand | 79 |
39 | VAN IMPE Lucien | 59 |
41 | SCHUITEN Roy | 83 |
46 | DEN HERTOG Fedor | 76 |
47 | ZOETEMELK Joop | 68 |
60 | VAN DEN HOEK Aad | 77 |
75 | MERCKX Eddy | 74 |
77 | AJA Gonzalo | 66 |
92 | MARTIN Raymond | 62 |