Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 84
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Merckx
2
74 kgKuiper
6
69 kgden Hertog
8
76 kgSchuiten
9
83 kgZoetemelk
12
68 kgBracke
16
79 kgVan Impe
17
59 kgAja
36
66 kgOvion
50
64 kgvan den Hoek
51
77 kgMartin
61
62 kgBourreau
63
63 kgKarstens
67
74 kgRosiers
73
78 kgNickson
75
76 kgThaler
89
60 kgRaas
93
72 kgSercu
95
76 kg
2
74 kgKuiper
6
69 kgden Hertog
8
76 kgSchuiten
9
83 kgZoetemelk
12
68 kgBracke
16
79 kgVan Impe
17
59 kgAja
36
66 kgOvion
50
64 kgvan den Hoek
51
77 kgMartin
61
62 kgBourreau
63
63 kgKarstens
67
74 kgRosiers
73
78 kgNickson
75
76 kgThaler
89
60 kgRaas
93
72 kgSercu
95
76 kg
Weight (KG) →
Result →
83
59
2
95
# | Rider | Weight (KG) |
---|---|---|
2 | MERCKX Eddy | 74 |
6 | KUIPER Hennie | 69 |
8 | DEN HERTOG Fedor | 76 |
9 | SCHUITEN Roy | 83 |
12 | ZOETEMELK Joop | 68 |
16 | BRACKE Ferdinand | 79 |
17 | VAN IMPE Lucien | 59 |
36 | AJA Gonzalo | 66 |
50 | OVION Régis | 64 |
51 | VAN DEN HOEK Aad | 77 |
61 | MARTIN Raymond | 62 |
63 | BOURREAU Bernard | 63 |
67 | KARSTENS Gerben | 74 |
73 | ROSIERS Roger | 78 |
75 | NICKSON Bill | 76 |
89 | THALER Klaus-Peter | 60 |
93 | RAAS Jan | 72 |
95 | SERCU Patrick | 76 |