Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 3.6 * weight - 209
This means that on average for every extra kilogram weight a rider loses 3.6 positions in the result.
Raas
1
72 kgThaler
2
60 kgKuiper
4
69 kgOvion
7
64 kgBourreau
21
63 kgZoetemelk
22
68 kgVan Impe
26
59 kgMerckx
30
74 kgAja
37
66 kgMartin
42
62 kgden Hertog
51
76 kgKarstens
63
74 kgBracke
77
79 kgSercu
85
76 kgSchuiten
86
83 kgNickson
90
76 kgRosiers
91
78 kgvan den Hoek
97
77 kg
1
72 kgThaler
2
60 kgKuiper
4
69 kgOvion
7
64 kgBourreau
21
63 kgZoetemelk
22
68 kgVan Impe
26
59 kgMerckx
30
74 kgAja
37
66 kgMartin
42
62 kgden Hertog
51
76 kgKarstens
63
74 kgBracke
77
79 kgSercu
85
76 kgSchuiten
86
83 kgNickson
90
76 kgRosiers
91
78 kgvan den Hoek
97
77 kg
Weight (KG) →
Result →
83
59
1
97
# | Rider | Weight (KG) |
---|---|---|
1 | RAAS Jan | 72 |
2 | THALER Klaus-Peter | 60 |
4 | KUIPER Hennie | 69 |
7 | OVION Régis | 64 |
21 | BOURREAU Bernard | 63 |
22 | ZOETEMELK Joop | 68 |
26 | VAN IMPE Lucien | 59 |
30 | MERCKX Eddy | 74 |
37 | AJA Gonzalo | 66 |
42 | MARTIN Raymond | 62 |
51 | DEN HERTOG Fedor | 76 |
63 | KARSTENS Gerben | 74 |
77 | BRACKE Ferdinand | 79 |
85 | SERCU Patrick | 76 |
86 | SCHUITEN Roy | 83 |
90 | NICKSON Bill | 76 |
91 | ROSIERS Roger | 78 |
97 | VAN DEN HOEK Aad | 77 |