Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 45
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Sercu
1
76 kgThaler
3
60 kgKarstens
4
74 kgNickson
20
76 kgOvion
25
64 kgKuiper
30
69 kgvan den Hoek
33
77 kgZoetemelk
37
68 kgVan Impe
45
59 kgBracke
46
79 kgRosiers
51
78 kgSchuiten
53
83 kgRaas
58
72 kgBourreau
62
63 kgMerckx
63
74 kgMartin
71
62 kgAja
79
66 kgden Hertog
81
76 kg
1
76 kgThaler
3
60 kgKarstens
4
74 kgNickson
20
76 kgOvion
25
64 kgKuiper
30
69 kgvan den Hoek
33
77 kgZoetemelk
37
68 kgVan Impe
45
59 kgBracke
46
79 kgRosiers
51
78 kgSchuiten
53
83 kgRaas
58
72 kgBourreau
62
63 kgMerckx
63
74 kgMartin
71
62 kgAja
79
66 kgden Hertog
81
76 kg
Weight (KG) →
Result →
83
59
1
81
# | Rider | Weight (KG) |
---|---|---|
1 | SERCU Patrick | 76 |
3 | THALER Klaus-Peter | 60 |
4 | KARSTENS Gerben | 74 |
20 | NICKSON Bill | 76 |
25 | OVION Régis | 64 |
30 | KUIPER Hennie | 69 |
33 | VAN DEN HOEK Aad | 77 |
37 | ZOETEMELK Joop | 68 |
45 | VAN IMPE Lucien | 59 |
46 | BRACKE Ferdinand | 79 |
51 | ROSIERS Roger | 78 |
53 | SCHUITEN Roy | 83 |
58 | RAAS Jan | 72 |
62 | BOURREAU Bernard | 63 |
63 | MERCKX Eddy | 74 |
71 | MARTIN Raymond | 62 |
79 | AJA Gonzalo | 66 |
81 | DEN HERTOG Fedor | 76 |