Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 13
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Merckx
1
74 kgSercu
1
76 kgBourreau
2
63 kgOvion
2
64 kgKuiper
3
69 kgKarstens
3
74 kgNickson
3
76 kgvan den Hoek
3
77 kgden Hertog
4
76 kgRaas
4
72 kgRosiers
4
78 kgZoetemelk
6
68 kgMartin
6
62 kgVan Impe
7
59 kgBracke
7
79 kgSchuiten
7
83 kgAja
10
66 kgThaler
10
60 kg
1
74 kgSercu
1
76 kgBourreau
2
63 kgOvion
2
64 kgKuiper
3
69 kgKarstens
3
74 kgNickson
3
76 kgvan den Hoek
3
77 kgden Hertog
4
76 kgRaas
4
72 kgRosiers
4
78 kgZoetemelk
6
68 kgMartin
6
62 kgVan Impe
7
59 kgBracke
7
79 kgSchuiten
7
83 kgAja
10
66 kgThaler
10
60 kg
Weight (KG) →
Result →
83
59
1
10
# | Rider | Weight (KG) |
---|---|---|
1 | MERCKX Eddy | 74 |
1 | SERCU Patrick | 76 |
2 | BOURREAU Bernard | 63 |
2 | OVION Régis | 64 |
3 | KUIPER Hennie | 69 |
3 | KARSTENS Gerben | 74 |
3 | NICKSON Bill | 76 |
3 | VAN DEN HOEK Aad | 77 |
4 | DEN HERTOG Fedor | 76 |
4 | RAAS Jan | 72 |
4 | ROSIERS Roger | 78 |
6 | ZOETEMELK Joop | 68 |
6 | MARTIN Raymond | 62 |
7 | VAN IMPE Lucien | 59 |
7 | BRACKE Ferdinand | 79 |
7 | SCHUITEN Roy | 83 |
10 | AJA Gonzalo | 66 |
10 | THALER Klaus-Peter | 60 |