Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.6 * weight - 63
This means that on average for every extra kilogram weight a rider loses 1.6 positions in the result.
Bourreau
2
63 kgOvion
14
64 kgKarstens
24
74 kgNickson
26
76 kgSercu
27
76 kgKuiper
34
69 kgThaler
36
60 kgMerckx
37
74 kgVan Impe
41
59 kgZoetemelk
42
68 kgRaas
66
72 kgRosiers
68
78 kgAja
69
66 kgMartin
77
62 kgden Hertog
80
76 kgSchuiten
81
83 kgvan den Hoek
82
77 kgBracke
86
79 kg
2
63 kgOvion
14
64 kgKarstens
24
74 kgNickson
26
76 kgSercu
27
76 kgKuiper
34
69 kgThaler
36
60 kgMerckx
37
74 kgVan Impe
41
59 kgZoetemelk
42
68 kgRaas
66
72 kgRosiers
68
78 kgAja
69
66 kgMartin
77
62 kgden Hertog
80
76 kgSchuiten
81
83 kgvan den Hoek
82
77 kgBracke
86
79 kg
Weight (KG) →
Result →
83
59
2
86
# | Rider | Weight (KG) |
---|---|---|
2 | BOURREAU Bernard | 63 |
14 | OVION Régis | 64 |
24 | KARSTENS Gerben | 74 |
26 | NICKSON Bill | 76 |
27 | SERCU Patrick | 76 |
34 | KUIPER Hennie | 69 |
36 | THALER Klaus-Peter | 60 |
37 | MERCKX Eddy | 74 |
41 | VAN IMPE Lucien | 59 |
42 | ZOETEMELK Joop | 68 |
66 | RAAS Jan | 72 |
68 | ROSIERS Roger | 78 |
69 | AJA Gonzalo | 66 |
77 | MARTIN Raymond | 62 |
80 | DEN HERTOG Fedor | 76 |
81 | SCHUITEN Roy | 83 |
82 | VAN DEN HOEK Aad | 77 |
86 | BRACKE Ferdinand | 79 |