Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight - 57
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Thaler
1
60 kgSercu
6
76 kgKarstens
7
74 kgKuiper
17
69 kgOvion
19
64 kgAja
25
66 kgMerckx
30
74 kgVan Impe
31
59 kgvan den Hoek
40
77 kgZoetemelk
50
68 kgMartin
51
62 kgNickson
55
76 kgBracke
58
79 kgRosiers
69
78 kgBourreau
72
63 kgSchuiten
77
83 kgden Hertog
83
76 kgRaas
84
72 kg
1
60 kgSercu
6
76 kgKarstens
7
74 kgKuiper
17
69 kgOvion
19
64 kgAja
25
66 kgMerckx
30
74 kgVan Impe
31
59 kgvan den Hoek
40
77 kgZoetemelk
50
68 kgMartin
51
62 kgNickson
55
76 kgBracke
58
79 kgRosiers
69
78 kgBourreau
72
63 kgSchuiten
77
83 kgden Hertog
83
76 kgRaas
84
72 kg
Weight (KG) →
Result →
83
59
1
84
# | Rider | Weight (KG) |
---|---|---|
1 | THALER Klaus-Peter | 60 |
6 | SERCU Patrick | 76 |
7 | KARSTENS Gerben | 74 |
17 | KUIPER Hennie | 69 |
19 | OVION Régis | 64 |
25 | AJA Gonzalo | 66 |
30 | MERCKX Eddy | 74 |
31 | VAN IMPE Lucien | 59 |
40 | VAN DEN HOEK Aad | 77 |
50 | ZOETEMELK Joop | 68 |
51 | MARTIN Raymond | 62 |
55 | NICKSON Bill | 76 |
58 | BRACKE Ferdinand | 79 |
69 | ROSIERS Roger | 78 |
72 | BOURREAU Bernard | 63 |
77 | SCHUITEN Roy | 83 |
83 | DEN HERTOG Fedor | 76 |
84 | RAAS Jan | 72 |