Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.7 * weight - 85
This means that on average for every extra kilogram weight a rider loses 1.7 positions in the result.
Kuiper
1
69 kgHinault
2
62 kgZoetemelk
3
68 kgVan Impe
6
59 kgNilsson
8
63 kgMartin
10
62 kgBernaudeau
11
64 kgRaas
18
72 kgden Hertog
21
76 kgBourreau
25
63 kgBittinger
29
69 kgMaertens
30
65 kgDidier
43
67 kgKelly
44
77 kgThaler
48
60 kgLasa
53
68 kgKarstens
58
74 kgOvion
61
64 kgvan den Hoek
62
77 kgDemeyer
66
85 kg
1
69 kgHinault
2
62 kgZoetemelk
3
68 kgVan Impe
6
59 kgNilsson
8
63 kgMartin
10
62 kgBernaudeau
11
64 kgRaas
18
72 kgden Hertog
21
76 kgBourreau
25
63 kgBittinger
29
69 kgMaertens
30
65 kgDidier
43
67 kgKelly
44
77 kgThaler
48
60 kgLasa
53
68 kgKarstens
58
74 kgOvion
61
64 kgvan den Hoek
62
77 kgDemeyer
66
85 kg
Weight (KG) →
Result →
85
59
1
66
# | Rider | Weight (KG) |
---|---|---|
1 | KUIPER Hennie | 69 |
2 | HINAULT Bernard | 62 |
3 | ZOETEMELK Joop | 68 |
6 | VAN IMPE Lucien | 59 |
8 | NILSSON Sven-Åke | 63 |
10 | MARTIN Raymond | 62 |
11 | BERNAUDEAU Jean-René | 64 |
18 | RAAS Jan | 72 |
21 | DEN HERTOG Fedor | 76 |
25 | BOURREAU Bernard | 63 |
29 | BITTINGER René | 69 |
30 | MAERTENS Freddy | 65 |
43 | DIDIER Lucien | 67 |
44 | KELLY Sean | 77 |
48 | THALER Klaus-Peter | 60 |
53 | LASA Miguel María | 68 |
58 | KARSTENS Gerben | 74 |
61 | OVION Régis | 64 |
62 | VAN DEN HOEK Aad | 77 |
66 | DEMEYER Marc | 85 |