Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 35
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Hinault
3
62 kgZoetemelk
4
68 kgNilsson
6
63 kgVan Impe
11
59 kgBittinger
13
69 kgMartin
15
62 kgMaertens
16
65 kgKelly
18
77 kgThaler
21
60 kgden Hertog
25
76 kgRaas
27
72 kgDemeyer
41
85 kgBourreau
49
63 kgBernaudeau
52
64 kgLasa
56
68 kgvan den Hoek
68
77 kgDidier
75
67 kg
3
62 kgZoetemelk
4
68 kgNilsson
6
63 kgVan Impe
11
59 kgBittinger
13
69 kgMartin
15
62 kgMaertens
16
65 kgKelly
18
77 kgThaler
21
60 kgden Hertog
25
76 kgRaas
27
72 kgDemeyer
41
85 kgBourreau
49
63 kgBernaudeau
52
64 kgLasa
56
68 kgvan den Hoek
68
77 kgDidier
75
67 kg
Weight (KG) →
Result →
85
59
3
75
# | Rider | Weight (KG) |
---|---|---|
3 | HINAULT Bernard | 62 |
4 | ZOETEMELK Joop | 68 |
6 | NILSSON Sven-Åke | 63 |
11 | VAN IMPE Lucien | 59 |
13 | BITTINGER René | 69 |
15 | MARTIN Raymond | 62 |
16 | MAERTENS Freddy | 65 |
18 | KELLY Sean | 77 |
21 | THALER Klaus-Peter | 60 |
25 | DEN HERTOG Fedor | 76 |
27 | RAAS Jan | 72 |
41 | DEMEYER Marc | 85 |
49 | BOURREAU Bernard | 63 |
52 | BERNAUDEAU Jean-René | 64 |
56 | LASA Miguel María | 68 |
68 | VAN DEN HOEK Aad | 77 |
75 | DIDIER Lucien | 67 |